summaryrefslogtreecommitdiff
authorMichael Krelin <hacker@klever.net>2018-07-31 19:51:59 (UTC)
committer Michael Krelin <hacker@klever.net>2018-07-31 19:51:59 (UTC)
commit4a82ab895f87a13be001635118499243f3a6171e (patch) (side-by-side diff)
tree6ba4b3fe42dae62649c4b6d477447f8a77accc6f
parent2489b5446f56dbabbca9b4ea9f40870c7f4f69e6 (diff)
downloadextrudery-4a82ab895f87a13be001635118499243f3a6171e.zip
extrudery-4a82ab895f87a13be001635118499243f3a6171e.tar.gz
extrudery-4a82ab895f87a13be001635118499243f3a6171e.tar.bz2
a tiny bit more compact
Diffstat (more/less context) (ignore whitespace changes)
-rw-r--r--multiswitch.scad2
1 files changed, 1 insertions, 1 deletions
diff --git a/multiswitch.scad b/multiswitch.scad
index ae85ee3..2b909a9 100644
--- a/multiswitch.scad
+++ b/multiswitch.scad
@@ -1,108 +1,108 @@
layer_height=.2; extrusion_width=.5;
epsilon=.01;
draft = true;
use <pushfittery.scad>;
include <pushfit_data.scad>;
module multiswitch(
liner_od = 4, liner_id = 2,
angle = 15, // to the vertical (output) axis
inputs = 4,
minshell = 2*extrusion_width,
shell = 5*extrusion_width,
pf = pushfit_embeddest,
debug = 0, // how many inputs -1 the debug cutout spans
draft = draft,
print = true,
liner_d_tolerance=.2
) {
fnd = 4*PI; fnr = 2*fnd;
pushfit_d = pf_d(pf);
pushfit_h = pf_h(pf);
angular_step = 360/inputs;
lod = liner_od+liner_d_tolerance; // effective liner diameter
sinsin = sin(angle)*sin(angular_step/2);
function l_to(d) = d*cos(asin(sinsin))/sinsin;
l_output = lod;
- l_input = l_to(pushfit_d/2+minshell);
+ l_input = l_to((pushfit_d+minshell)/2);
l_fork = l_to(liner_id/2);
l_narrow = l_to(lod/2+minshell);
module forinputs() {
for(zr=[0:angular_step:359]) rotate([0,0,zr]) rotate([0,angle,0]) children();
}//forinputs module
module foroutput() {
rotate([180,0,0]) children();
}
module laydown() {
r = pushfit_d/2+shell;
h_bottom = l_output+pushfit_h;
/* The top point on the cylinder that will touch the bed */
x0 = r*cos(angular_step/2);
y0 = r*sin(angular_step/2);
z0 = l_input+pushfit_h;
/* The same point after rotation by "angle" around Y axis */
x1 = z0*sin(angle)+x0*cos(angle);
y1 = y0;
z1 = z0*cos(angle)-x0*sin(angle);
ax1 = atan(y1/x1);
/* And its x-coordinate after final "angular_step/2" Z-rotation */
ax2 = ax1-angular_step/2;
x2 = x1*cos(ax2)/cos(ax1);
laydown_angle = atan((x2-r)/(z1+h_bottom));
rotate([90-laydown_angle,0,0])
translate([0,r,h_bottom])
rotate([0,0,angular_step/2-90])
children();
}
module finalize() {
if(print) laydown() children();
else children();
}
finalize() difference() {
hull() {
forinputs()
translate([0,0,l_input+pushfit_h]) mirror([0,0,1])
cylinder(d=pushfit_d+shell*2,h=epsilon,$fn=pushfit_d*fnd);
foroutput()
translate([0,0,l_output+pushfit_h]) {
cylinder(d=pushfit_d+shell*2,h=epsilon,$fn=pushfit_d*fnd);
}
}
forinputs() {
translate([0,0,l_input]) pushfit(pf,draft=draft);
translate([0,0,l_narrow]) {
cylinder(d=lod,h=l_input+1-l_narrow,$fn=lod*fnd);
mirror([0,0,1]) translate([0,0,-epsilon])
cylinder(d1=(liner_id+lod)/2,d2=liner_id,h=liner_id,$fn=lod*fnd);
}
cylinder(d=liner_id,h=l_input+epsilon,$fn=liner_id*fnd);
}
foroutput() {
translate([0,0,l_output]) pushfit(pf,draft=draft);
cylinder(d=lod,h=l_output+1,$fn=lod*fnd);
}
hull() {
forinputs()
translate([0,0,l_fork]) cylinder(d=liner_id,h=epsilon,$fn=liner_id*fnd);
foroutput()
cylinder(d=liner_id,h=epsilon,$fn=liner_id*fnd);
}
if(debug) {
translate([0,0,-20/*TODO:*/])
rotate_extrude(angle=angular_step*debug)
square([50,100]/*TODO:*/);
}
}
}
multiswitch(debug=2,print=false);