layer_height=0.2; extrusion_width=0.45; epsilon=0.01; $fs=0.125; draft=true; use ; module pushfit_thread(h=10) { thr = 3/8 + .5/25.4; slit = 25.4*thr/2 + 0.2; if(draft) cylinder(d=thr*25.4,h=h); else english_thread(diameter=thr,threads_per_inch=28,length=h/25.4,internal=true); translate([-2,-slit,0]) cube([4,2*slit,h]); } module the_mixer( pushfit_d = 10, pushfit_h = 10, pushfit_id = 6, pushfit_type = "threaded", // threaded|embedded|embeddest pushfit_ring_h = 4.7, // height of embedded pushfit ring pushfit_insert_d = 8, // diameter of pushfit insert legs hole pushfit_legspace_h = 3.2, // the height of legspace for embeddest variant pushfit_inlet_ch = 1, // inlet chamfer liner_d = 4, liner_id = 2, // ptfe liner inner and outer diameters filament_d = 1.75, join_angle = 30, joint = "wide", // wide|narrow interpushfit = 2*extrusion_width, // space between two pushfit holes pushfit_s = 2, // shell around pushfit holes output_l = 4, // length of output liner after before pushfit outer_r = 3, // outer radius liner_d_tolerance = .2, filament_d_tolerance = .25 ) { fnd = PI*2*2; fnr = fnd*2; ld = liner_d+liner_d_tolerance; fd = filament_d+filament_d_tolerance; linero = ld/2/tan(join_angle/2); // liner offset jd = (joint=="narrow") ? fd : ld; // joint diameter jo = (joint=="narrow") ? jd/2/tan(join_angle/2) : linero; // joint offset pfrx = interpushfit/2/cos(join_angle/2); // radial margin pfR = pushfit_d/2+pfrx; // radius of pushfit with margin // offset of pushfit offset pfoo = (pushfit_type=="threaded") ? 0 : (pushfit_type=="embedded") ? (pushfit_h-pushfit_ring_h) : (pushfit_type=="embeddest") ? 0 : undef; pfo = pfR/tan(join_angle/2)-pfoo; // pushfit thread ofset h = pushfit_d+pushfit_s*2; module liner(l,in,offset=0,linero) { lo = linero==undef ? l/2 : linero; translate([0,0,offset]) if(joint=="narrow") { $fn = max(fd,ld,jd)*fnd; cylinder(d=fd,h=l); //if(in=="top") cylinder(d1=jd,d2=fd,h=(jd-fd)/2); translate([0,0,lo]) cylinder(d=ld,h=l-lo); if(in=="bottom") translate([0,0,lo+epsilon]) mirror([0,0,1]) cylinder(d1=(liner_id+ld)/2,d2=fd,h=(liner_id+ld-fd)/2); }else{ inh=ld-liner_id; union() { translate([0,0,inh]) cylinder(d=ld,h=l-inh,$fn=ld*fnd); translate([0,0,-epsilon]) cylinder(d1=ld+epsilon,d2=liner_id-epsilon,h=inh+2*epsilon,$fn=ld*fnd); } } } module pushfit() { if(pushfit_type=="threaded") { pushfit_thread(h=pushfit_h); }else if(pushfit_type=="embedded") { translate([0,0,pushfit_h-pushfit_ring_h]) cylinder(d=pushfit_d,h=pushfit_ring_h,$fn=fnd); cylinder(d=pushfit_insert_d,h=pushfit_h,$fn=pushfit_insert_d*fnd); }else if(pushfit_type=="embeddest") { cylinder(d=pushfit_id,h=pushfit_h+1,$fn=pushfit_insert_d*fnd); cylinder(d=pushfit_d,h=pushfit_legspace_h,$fn=pushfit_d*fnd); dd = (pushfit_d-pushfit_id)/2; translate([0,0,pushfit_legspace_h-epsilon]) cylinder(d1=pushfit_d,d2=pushfit_id-2*epsilon,h=dd+epsilon,$fn=pushfit_d*fnd); translate([0,0,pushfit_h-pushfit_inlet_ch-epsilon]) cylinder(d1=pushfit_id-2*epsilon,d2=pushfit_id+2*pushfit_inlet_ch+2,h=pushfit_inlet_ch+epsilon+1,$fn=(pushfit_id+2*pushfit_inlet_ch+2)*fnd); } } difference() { hull() { for(s=[-1,1]) { rotate([0,0,s*join_angle/2]) for(ss=[-1,1]) translate([ss*pushfit_d/2,pfo+pushfit_h-outer_r-epsilon]) cylinder(r=outer_r,h=h,center=true,$fn=outer_r*fnr); translate([s*pushfit_d/2,-output_l-pushfit_h+outer_r+epsilon,0]) cylinder(r=outer_r,h=h,center=true,$fn=outer_r*fnr); } } for(s=[-1,1]) rotate([0,0,s*join_angle/2]) { rotate([-90,0,0]) liner(l=pfo-jo+epsilon,in="bottom",offset=jo); translate([0,pfo,0]) rotate([-90,0,0]) pushfit(); } rotate([90,0,0]) { liner(l=output_l+epsilon,in="top",linero=0); //cylinder(d=ld,h=output_l+1,$fn=ld*fnd); translate([0,0,output_l]) pushfit(); } hull() { for(s=[-1,1]) rotate([0,0,s*join_angle/2]) { rotate([-90,0,0]) translate([0,0,jo]) cylinder(d=jd,h=epsilon,$fn=jd*fnd); } rotate([90,0,0]) cylinder(d=jd,h=epsilon,$fn=jd*fnd); } } } module this() { the_mixer( pushfit_type="embeddest", pushfit_d = 8, pushfit_h = 7, interpushfit = extrusion_width, joint = "narrow" ); } if(!false) { difference() { this(); cylinder(d=100,h=100); } }else this();