/* * ISO-standard metric threads, following this specification: * http://en.wikipedia.org/wiki/ISO_metric_screw_thread * * Dan Kirshner - dan_kirshner@yahoo.com * * You are welcome to make free use of this software. Retention of my * authorship credit would be appreciated. * * Version 1.9. 2016-07-03 Option: tapered. * Version 1.8. 2016-01-08 Option: (non-standard) angle. * Version 1.7. 2015-11-28 Larger x-increment - for small-diameters. * Version 1.6. 2015-09-01 Options: square threads, rectangular threads. * Version 1.5. 2015-06-12 Options: thread_size, groove. * Version 1.4. 2014-10-17 Use "faces" instead of "triangles" for polyhedron * Version 1.3. 2013-12-01 Correct loop over turns -- don't have early cut-off * Version 1.2. 2012-09-09 Use discrete polyhedra rather than linear_extrude () * Version 1.1. 2012-09-07 Corrected to right-hand threads! */ // Examples. // // Standard M8 x 1. // metric_thread (diameter=8, pitch=1, length=4); // Square thread. // metric_thread (diameter=8, pitch=1, length=4, square=true); // Non-standard: long pitch, same thread size. //metric_thread (diameter=8, pitch=4, length=4, thread_size=1, groove=true); // Non-standard: 20 mm diameter, long pitch, square "trough" width 3 mm, // depth 1 mm. //metric_thread (diameter=20, pitch=8, length=16, square=true, thread_size=6, // groove=true, rectangle=0.333); // English: 1/4 x 20. //english_thread (diameter=1/4, threads_per_inch=20, length=1); // Tapered. Example -- pipe size 3/4" -- per: // http://www.engineeringtoolbox.com/npt-national-pipe-taper-threads-d_750.html // english_thread (diameter=1.05, threads_per_inch=14, length=3/4, taper=1/16); // Thread for mounting on Rohloff hub. //difference () { // cylinder (r=20, h=10, $fn=100); // // metric_thread (diameter=34, pitch=1, length=10, internal=true, n_starts=6); //} // ---------------------------------------------------------------------------- function segments (diameter) = min (50, ceil (diameter*6)); // ---------------------------------------------------------------------------- // internal - true = clearances for internal thread (e.g., a nut). // false = clearances for external thread (e.g., a bolt). // (Internal threads should be "cut out" from a solid using // difference ()). // n_starts - Number of thread starts (e.g., DNA, a "double helix," has // n_starts=2). See wikipedia Screw_thread. // thread_size - (non-standard) size of a single thread "V" - independent of // pitch. Default: same as pitch. // groove - (non-standard) subtract inverted "V" from cylinder (rather than // add protruding "V" to cylinder). // square - Square threads (per // https://en.wikipedia.org/wiki/Square_thread_form). // rectangle - (non-standard) "Rectangular" thread - ratio depth/width // Default: 1 (square). // angle - (non-standard) angle (deg) of thread side from perpendicular to // axis (default = standard = 30 degrees). // taper - diameter change per length (National Pipe Thread/ANSI B1.20.1 // is 1" diameter per 16" length). module metric_thread (diameter=8, pitch=1, length=1, internal=false, n_starts=1, thread_size=-1, groove=false, square=false, rectangle=0, angle=30, taper=0) { // thread_size: size of thread "V" different than travel per turn (pitch). // Default: same as pitch. local_thread_size = thread_size == -1 ? pitch : thread_size; local_rectangle = rectangle ? rectangle : 1; n_segments = segments (diameter); h = (square || rectangle) ? local_thread_size*local_rectangle/2 : local_thread_size * cos (angle); h_fac1 = (square || rectangle) ? 0.90 : 0.625; // External thread includes additional relief. h_fac2 = (square || rectangle) ? 0.95 : 5.3/8; if (! groove) { metric_thread_turns (diameter, pitch, length, internal, n_starts, local_thread_size, groove, square, rectangle, angle, taper); } difference () { // Solid center, including Dmin truncation. tapered_diameter = diameter - length*taper; if (groove) { cylinder (r1=diameter/2, r2=tapered_diameter/2, h=length, $fn=n_segments); } else if (internal) { cylinder (r1=diameter/2 - h*h_fac1, r2=tapered_diameter/2 - h*h_fac1, h=length, $fn=n_segments); } else { // External thread. cylinder (r1=diameter/2 - h*h_fac2, r2=tapered_diameter/2 - h*h_fac2, h=length, $fn=n_segments); } if (groove) { metric_thread_turns (diameter, pitch, length, internal, n_starts, local_thread_size, groove, square, rectangle, angle, taper); } } } // ---------------------------------------------------------------------------- // Input units in inches. // Note: units of measure in drawing are mm! module english_thread (diameter=0.25, threads_per_inch=20, length=1, internal=false, n_starts=1, thread_size=-1, groove=false, square=false, rectangle=0, angle=30, taper=0) { // Convert to mm. mm_diameter = diameter*25.4; mm_pitch = (1.0/threads_per_inch)*25.4; mm_length = length*25.4; echo (str ("mm_diameter: ", mm_diameter)); echo (str ("mm_pitch: ", mm_pitch)); echo (str ("mm_length: ", mm_length)); metric_thread (mm_diameter, mm_pitch, mm_length, internal, n_starts, thread_size, groove, square, rectangle, angle, taper); } // ---------------------------------------------------------------------------- module metric_thread_turns (diameter, pitch, length, internal, n_starts, thread_size, groove, square, rectangle, angle, taper) { // Number of turns needed. n_turns = floor (length/pitch); intersection () { // Start one below z = 0. Gives an extra turn at each end. for (i=[-1*n_starts : n_turns+1]) { translate ([0, 0, i*pitch]) { metric_thread_turn (diameter, pitch, internal, n_starts, thread_size, groove, square, rectangle, angle, taper, i*pitch); } } // Cut to length. translate ([0, 0, length/2]) { cube ([diameter*3, diameter*3, length], center=true); } } } // ---------------------------------------------------------------------------- module metric_thread_turn (diameter, pitch, internal, n_starts, thread_size, groove, square, rectangle, angle, taper, z) { n_segments = segments (diameter); fraction_circle = 1.0/n_segments; for (i=[0 : n_segments-1]) { rotate ([0, 0, i*360*fraction_circle]) { translate ([0, 0, i*n_starts*pitch*fraction_circle]) { current_diameter = diameter - taper*(z + i*n_starts*pitch*fraction_circle); thread_polyhedron (current_diameter/2, pitch, internal, n_starts, thread_size, groove, square, rectangle, angle); } } } } // ---------------------------------------------------------------------------- // z (see diagram) as function of current radius. // (Only good for first half-pitch.) function z_fct (current_radius, radius, pitch, angle) = 0.5* (current_radius - (radius - 0.875*pitch*cos (angle))) /cos (angle); // ---------------------------------------------------------------------------- module thread_polyhedron (radius, pitch, internal, n_starts, thread_size, groove, square, rectangle, angle) { n_segments = segments (radius*2); fraction_circle = 1.0/n_segments; local_rectangle = rectangle ? rectangle : 1; h = (square || rectangle) ? thread_size*local_rectangle/2 : thread_size * cos (angle); outer_r = radius + (internal ? h/20 : 0); // Adds internal relief. //echo (str ("outer_r: ", outer_r)); // A little extra on square thread -- make sure overlaps cylinder. h_fac1 = (square || rectangle) ? 1.1 : 0.875; inner_r = radius - h*h_fac1; // Does NOT do Dmin_truncation - do later with // cylinder. translate_y = groove ? outer_r + inner_r : 0; reflect_x = groove ? 1 : 0; // Make these just slightly bigger (keep in proportion) so polyhedra will // overlap. x_incr_outer = (! groove ? outer_r : inner_r) * fraction_circle * 2 * PI * 1.02; x_incr_inner = (! groove ? inner_r : outer_r) * fraction_circle * 2 * PI * 1.02; z_incr = n_starts * pitch * fraction_circle * 1.005; /* (angles x0 and x3 inner are actually 60 deg) /\ (x2_inner, z2_inner) [2] / \ (x3_inner, z3_inner) / \ [3] \ \ |\ \ (x2_outer, z2_outer) [6] | \ / | \ /| z |[7]\/ / (x1_outer, z1_outer) [5] | | | / | x | |/ | / | / (x0_outer, z0_outer) [4] | / | / (behind: (x1_inner, z1_inner) [1] |/ | / y________| |/ (r) / (x0_inner, z0_inner) [0] */ x1_outer = outer_r * fraction_circle * 2 * PI; z0_outer = z_fct (outer_r, radius, thread_size, angle); //echo (str ("z0_outer: ", z0_outer)); //polygon ([[inner_r, 0], [outer_r, z0_outer], // [outer_r, 0.5*pitch], [inner_r, 0.5*pitch]]); z1_outer = z0_outer + z_incr; // Give internal square threads some clearance in the z direction, too. bottom = internal ? 0.235 : 0.25; top = internal ? 0.765 : 0.75; translate ([0, translate_y, 0]) { mirror ([reflect_x, 0, 0]) { if (square || rectangle) { // Rule for face ordering: look at polyhedron from outside: points must // be in clockwise order. polyhedron ( points = [ [-x_incr_inner/2, -inner_r, bottom*thread_size], // [0] [x_incr_inner/2, -inner_r, bottom*thread_size + z_incr], // [1] [x_incr_inner/2, -inner_r, top*thread_size + z_incr], // [2] [-x_incr_inner/2, -inner_r, top*thread_size], // [3] [-x_incr_outer/2, -outer_r, bottom*thread_size], // [4] [x_incr_outer/2, -outer_r, bottom*thread_size + z_incr], // [5] [x_incr_outer/2, -outer_r, top*thread_size + z_incr], // [6] [-x_incr_outer/2, -outer_r, top*thread_size] // [7] ], faces = [ [0, 3, 7, 4], // This-side trapezoid [1, 5, 6, 2], // Back-side trapezoid [0, 1, 2, 3], // Inner rectangle [4, 7, 6, 5], // Outer rectangle // These are not planar, so do with separate triangles. [7, 2, 6], // Upper rectangle, bottom [7, 3, 2], // Upper rectangle, top [0, 5, 1], // Lower rectangle, bottom [0, 4, 5] // Lower rectangle, top ] ); } else { // Rule for face ordering: look at polyhedron from outside: points must // be in clockwise order. polyhedron ( points = [ [-x_incr_inner/2, -inner_r, 0], // [0] [x_incr_inner/2, -inner_r, z_incr], // [1] [x_incr_inner/2, -inner_r, thread_size + z_incr], // [2] [-x_incr_inner/2, -inner_r, thread_size], // [3] [-x_incr_outer/2, -outer_r, z0_outer], // [4] [x_incr_outer/2, -outer_r, z0_outer + z_incr], // [5] [x_incr_outer/2, -outer_r, thread_size - z0_outer + z_incr], // [6] [-x_incr_outer/2, -outer_r, thread_size - z0_outer] // [7] ], faces = [ [0, 3, 7, 4], // This-side trapezoid [1, 5, 6, 2], // Back-side trapezoid [0, 1, 2, 3], // Inner rectangle [4, 7, 6, 5], // Outer rectangle // These are not planar, so do with separate triangles. [7, 2, 6], // Upper rectangle, bottom [7, 3, 2], // Upper rectangle, top [0, 5, 1], // Lower rectangle, bottom [0, 4, 5] // Lower rectangle, top ] ); } } } }