From 20bea94ab6b91c85b171dcf86baba0a64169d508 Mon Sep 17 00:00:00 2001 From: Giulio Cesare Solaroli Date: Fri, 30 Aug 2013 15:56:53 +0000 Subject: First release of /delta version --- (limited to 'frontend/delta/js/Clipperz/Crypto/BigInt.js') diff --git a/frontend/delta/js/Clipperz/Crypto/BigInt.js b/frontend/delta/js/Clipperz/Crypto/BigInt.js new file mode 100644 index 0000000..031ed30 --- a/dev/null +++ b/frontend/delta/js/Clipperz/Crypto/BigInt.js @@ -0,0 +1,1754 @@ +/* + +Copyright 2008-2013 Clipperz Srl + +This file is part of Clipperz, the online password manager. +For further information about its features and functionalities please +refer to http://www.clipperz.com. + +* Clipperz is free software: you can redistribute it and/or modify it + under the terms of the GNU Affero General Public License as published + by the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + +* Clipperz is distributed in the hope that it will be useful, but + WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Clipperz. If not, see http://www.gnu.org/licenses/. + +*/ + +if (typeof(Clipperz) == 'undefined') { Clipperz = {}; } +if (typeof(Clipperz.Crypto) == 'undefined') { Clipperz.Crypto = {}; } + +//############################################################################# +// Downloaded on March 05, 2007 from http://www.leemon.com/crypto/BigInt.js +//############################################################################# + + +//////////////////////////////////////////////////////////////////////////////////////// +// Big Integer Library v. 5.0 +// Created 2000, last modified 2006 +// Leemon Baird +// www.leemon.com +// +// This file is public domain. You can use it for any purpose without restriction. +// I do not guarantee that it is correct, so use it at your own risk. If you use +// it for something interesting, I'd appreciate hearing about it. If you find +// any bugs or make any improvements, I'd appreciate hearing about those too. +// It would also be nice if my name and address were left in the comments. +// But none of that is required. +// +// This code defines a bigInt library for arbitrary-precision integers. +// A bigInt is an array of integers storing the value in chunks of bpe bits, +// little endian (buff[0] is the least significant word). +// Negative bigInts are stored two's complement. +// Some functions assume their parameters have at least one leading zero element. +// Functions with an underscore at the end of the name have unpredictable behavior in case of overflow, +// so the caller must make sure overflow won't happen. +// For each function where a parameter is modified, that same +// variable must not be used as another argument too. +// So, you cannot square x by doing multMod_(x,x,n). +// You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n). +// +// These functions are designed to avoid frequent dynamic memory allocation in the inner loop. +// For most functions, if it needs a BigInt as a local variable it will actually use +// a global, and will only allocate to it when it's not the right size. This ensures +// that when a function is called repeatedly with same-sized parameters, it only allocates +// memory on the first call. +// +// Note that for cryptographic purposes, the calls to Math.random() must +// be replaced with calls to a better pseudorandom number generator. +// +// In the following, "bigInt" means a bigInt with at least one leading zero element, +// and "integer" means a nonnegative integer less than radix. In some cases, integer +// can be negative. Negative bigInts are 2s complement. +// +// The following functions do not modify their inputs, but dynamically allocate memory every time they are called: +// +// function bigInt2str(x,base) //convert a bigInt into a string in a given base, from base 2 up to base 95 +// function dup(x) //returns a copy of bigInt x +// function findPrimes(n) //return array of all primes less than integer n +// function int2bigInt(t,n,m) //convert integer t to a bigInt with at least n bits and m array elements +// function int2bigInt(s,b,n,m) //convert string s in base b to a bigInt with at least n bits and m array elements +// function trim(x,k) //return a copy of x with exactly k leading zero elements +// +// The following functions do not modify their inputs, so there is never a problem with the result being too big: +// +// function bitSize(x) //returns how many bits long the bigInt x is, not counting leading zeros +// function equals(x,y) //is the bigInt x equal to the bigint y? +// function equalsInt(x,y) //is bigint x equal to integer y? +// function greater(x,y) //is x>y? (x and y are nonnegative bigInts) +// function greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y? +// function isZero(x) //is the bigInt x equal to zero? +// function millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime (as opposed to definitely composite)? +// function modInt(x,n) //return x mod n for bigInt x and integer n. +// function negative(x) //is bigInt x negative? +// +// The following functions do not modify their inputs, but allocate memory and call functions with underscores +// +// function add(x,y) //return (x+y) for bigInts x and y. +// function addInt(x,n) //return (x+n) where x is a bigInt and n is an integer. +// function expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed +// function inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null +// function mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n. +// function mult(x,y) //return x*y for bigInts x and y. This is faster when y=1. +// function randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb. +// function squareMod_(x,n) //do x=x*x mod n for bigInts x,n +// function sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement. +// function subShift_(x,y,ys) //do x=x-(y<<(ys*bpe)). Negative answers will be 2s complement. +// +// The following functions are based on algorithms from the _Handbook of Applied Cryptography_ +// powMod_() = algorithm 14.94, Montgomery exponentiation +// eGCD_,inverseMod_() = algorithm 14.61, Binary extended GCD_ +// GCD_() = algorothm 14.57, Lehmer's algorithm +// mont_() = algorithm 14.36, Montgomery multiplication +// divide_() = algorithm 14.20 Multiple-precision division +// squareMod_() = algorithm 14.16 Multiple-precision squaring +// randTruePrime_() = algorithm 4.62, Maurer's algorithm +// millerRabin() = algorithm 4.24, Miller-Rabin algorithm +// +// Profiling shows: +// randTruePrime_() spends: +// 10% of its time in calls to powMod_() +// 85% of its time in calls to millerRabin() +// millerRabin() spends: +// 99% of its time in calls to powMod_() (always with a base of 2) +// powMod_() spends: +// 94% of its time in calls to mont_() (almost always with x==y) +// +// This suggests there are several ways to speed up this library slightly: +// - convert powMod_ to use a Montgomery form of k-ary window (or maybe a Montgomery form of sliding window) +// -- this should especially focus on being fast when raising 2 to a power mod n +// - convert randTruePrime_() to use a minimum r of 1/3 instead of 1/2 with the appropriate change to the test +// - tune the parameters in randTruePrime_(), including c, m, and recLimit +// - speed up the single loop in mont_() that takes 95% of the runtime, perhaps by reducing checking +// within the loop when all the parameters are the same length. +// +// There are several ideas that look like they wouldn't help much at all: +// - replacing trial division in randTruePrime_() with a sieve (that speeds up something taking almost no time anyway) +// - increase bpe from 15 to 30 (that would help if we had a 32*32->64 multiplier, but not with JavaScript's 32*32->32) +// - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square +// followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that +// method would be slower. This is unfortunate because the code currently spends almost all of its time +// doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring +// would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded +// sentences that seem to imply it's faster to do a non-modular square followed by a single +// Montgomery reduction, but that's obviously wrong. +//////////////////////////////////////////////////////////////////////////////////////// + +//globals +bpe=0; //bits stored per array element +mask=0; //AND this with an array element to chop it down to bpe bits +radix=mask+1; //equals 2^bpe. A single 1 bit to the left of the last bit of mask. + +//the digits for converting to different bases +digitsStr='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-'; + +//initialize the global variables +for (bpe=0; (1<<(bpe+1)) > (1<>=1; //bpe=number of bits in one element of the array representing the bigInt +mask=(1<0); j--); + for (z=0,w=x[j]; w; (w>>=1),z++); + z+=bpe*j; + return z; +} + +//return a copy of x with at least n elements, adding leading zeros if needed +function expand(x,n) { + var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0); + copy_(ans,x); + return ans; +} + +//return a k-bit true random prime using Maurer's algorithm. +function randTruePrime(k) { + var ans=int2bigInt(0,k,0); + randTruePrime_(ans,k); + return trim(ans,1); +} + +//return a new bigInt equal to (x mod n) for bigInts x and n. +function mod(x,n) { + var ans=dup(x); + mod_(ans,n); + return trim(ans,1); +} + +//return (x+n) where x is a bigInt and n is an integer. +function addInt(x,n) { + var ans=expand(x,x.length+1); + addInt_(ans,n); + return trim(ans,1); +} + +//return x*y for bigInts x and y. This is faster when yy.length ? x.length+1 : y.length+1)); + sub_(ans,y); + return trim(ans,1); +} + +//return (x+y) for bigInts x and y. +function add(x,y) { + var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); + add_(ans,y); + return trim(ans,1); +} + +//return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null +function inverseMod(x,n) { + var ans=expand(x,n.length); + var s; + s=inverseMod_(ans,n); + return s ? trim(ans,1) : null; +} + +//return (x*y mod n) for bigInts x,y,n. For greater speed, let y>1))-1; //pm is binary number with all ones, just over sqrt(2^k) + copyInt_(ans,0); + for (dd=1;dd;) { + dd=0; + ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits + for (r=1; k-k*r<=m; ) + r=pows[Math.floor(Math.random()*512)]; //r=Math.pow(2,Math.random()-1); + else + r=.5; + + //simulation suggests the more complex algorithm using r=.333 is only slightly faster. + + recSize=Math.floor(r*k)+1; + + randTruePrime_(s_q,recSize); + copyInt_(s_i2,0); + s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2) + divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q)) + + z=bitSize(s_i); + + for (;;) { + for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1] + randBigInt_(s_R,z,0); + if (greater(s_i,s_R)) + break; + } //now s_R is in the range [0,s_i-1] + addInt_(s_R,1); //now s_R is in the range [1,s_i] + add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i] + + copy_(s_n,s_q); + mult_(s_n,s_R); + multInt_(s_n,2); + addInt_(s_n,1); //s_n=2*s_R*s_q+1 + + copy_(s_r2,s_R); + multInt_(s_r2,2); //s_r2=2*s_R + + //check s_n for divisibility by small primes up to B + for (divisible=0,j=0; (j0); j--); //strip leading zeros + for (zz=0,w=s_n[j]; w; (w>>=1),zz++); + zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros + for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1] + randBigInt_(s_a,zz,0); + if (greater(s_n,s_a)) + break; + } //now s_a is in the range [0,s_n-1] + addInt_(s_n,3); //now s_a is in the range [0,s_n-4] + addInt_(s_a,2); //now s_a is in the range [2,s_n-2] + copy_(s_b,s_a); + copy_(s_n1,s_n); + addInt_(s_n1,-1); + powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n + addInt_(s_b,-1); + if (isZero(s_b)) { + copy_(s_b,s_a); + powMod_(s_b,s_r2,s_n); + addInt_(s_b,-1); + copy_(s_aa,s_n); + copy_(s_d,s_b); + GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime + if (equalsInt(s_d,1)) { + copy_(ans,s_aa); + return; //if we've made it this far, then s_n is absolutely guaranteed to be prime + } + } + } + } +} + +//set b to an n-bit random BigInt. If s=1, then nth bit (most significant bit) is set to 1. +//array b must be big enough to hold the result. Must have n>=1 +function randBigInt_(b,n,s) { + var i,a; + for (i=0;i=0;i--); //find most significant element of x + xp=x[i]; + yp=y[i]; + A=1; B=0; C=0; D=1; + while ((yp+C) && (yp+D)) { + q =Math.floor((xp+A)/(yp+C)); + qp=Math.floor((xp+B)/(yp+D)); + if (q!=qp) + break; + t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp) + t= B-q*D; B=D; D=t; + t=xp-q*yp; xp=yp; yp=t; + } + if (B) { + copy_(T,x); + linComb_(x,y,A,B); //x=A*x+B*y + linComb_(y,T,D,C); //y=D*y+C*T + } else { + mod_(x,y); + copy_(T,x); + copy_(x,y); + copy_(y,T); + } + } + if (y[0]==0) + return; + t=modInt(x,y[0]); + copyInt_(x,y[0]); + y[0]=t; + while (y[0]) { + x[0]%=y[0]; + t=x[0]; x[0]=y[0]; y[0]=t; + } +} + +//do x=x**(-1) mod n, for bigInts x and n. +//If no inverse exists, it sets x to zero and returns 0, else it returns 1. +//The x array must be at least as large as the n array. +function inverseMod_(x,n) { + var k=1+2*Math.max(x.length,n.length); + + if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist + copyInt_(x,0); + return 0; + } + + if (eg_u.length!=k) { + eg_u=new Array(k); + eg_v=new Array(k); + eg_A=new Array(k); + eg_B=new Array(k); + eg_C=new Array(k); + eg_D=new Array(k); + } + + copy_(eg_u,x); + copy_(eg_v,n); + copyInt_(eg_A,1); + copyInt_(eg_B,0); + copyInt_(eg_C,0); + copyInt_(eg_D,1); + for (;;) { + while(!(eg_u[0]&1)) { //while eg_u is even + halve_(eg_u); + if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2 + halve_(eg_A); + halve_(eg_B); + } else { + add_(eg_A,n); halve_(eg_A); + sub_(eg_B,x); halve_(eg_B); + } + } + + while (!(eg_v[0]&1)) { //while eg_v is even + halve_(eg_v); + if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2 + halve_(eg_C); + halve_(eg_D); + } else { + add_(eg_C,n); halve_(eg_C); + sub_(eg_D,x); halve_(eg_D); + } + } + + if (!greater(eg_v,eg_u)) { //eg_v <= eg_u + sub_(eg_u,eg_v); + sub_(eg_A,eg_C); + sub_(eg_B,eg_D); + } else { //eg_v > eg_u + sub_(eg_v,eg_u); + sub_(eg_C,eg_A); + sub_(eg_D,eg_B); + } + + if (equalsInt(eg_u,0)) { + if (negative(eg_C)) //make sure answer is nonnegative + add_(eg_C,n); + copy_(x,eg_C); + + if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse + copyInt_(x,0); + return 0; + } + return 1; + } + } +} + +//return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse +function inverseModInt_(x,n) { + var a=1,b=0,t; + for (;;) { + if (x==1) return a; + if (x==0) return 0; + b-=a*Math.floor(n/x); + n%=x; + + if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to += + if (n==0) return 0; + a-=b*Math.floor(x/n); + x%=n; + } +} + +//Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that: +// v = GCD_(x,y) = a*x-b*y +//The bigInts v, a, b, must have exactly as many elements as the larger of x and y. +function eGCD_(x,y,v,a,b) { + var g=0; + var k=Math.max(x.length,y.length); + if (eg_u.length!=k) { + eg_u=new Array(k); + eg_A=new Array(k); + eg_B=new Array(k); + eg_C=new Array(k); + eg_D=new Array(k); + } + while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even + halve_(x); + halve_(y); + g++; + } + copy_(eg_u,x); + copy_(v,y); + copyInt_(eg_A,1); + copyInt_(eg_B,0); + copyInt_(eg_C,0); + copyInt_(eg_D,1); + for (;;) { + while(!(eg_u[0]&1)) { //while u is even + halve_(eg_u); + if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2 + halve_(eg_A); + halve_(eg_B); + } else { + add_(eg_A,y); halve_(eg_A); + sub_(eg_B,x); halve_(eg_B); + } + } + + while (!(v[0]&1)) { //while v is even + halve_(v); + if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2 + halve_(eg_C); + halve_(eg_D); + } else { + add_(eg_C,y); halve_(eg_C); + sub_(eg_D,x); halve_(eg_D); + } + } + + if (!greater(v,eg_u)) { //v<=u + sub_(eg_u,v); + sub_(eg_A,eg_C); + sub_(eg_B,eg_D); + } else { //v>u + sub_(v,eg_u); + sub_(eg_C,eg_A); + sub_(eg_D,eg_B); + } + if (equalsInt(eg_u,0)) { + if (negative(eg_C)) { //make sure a (C)is nonnegative + add_(eg_C,y); + sub_(eg_D,x); + } + multInt_(eg_D,-1); ///make sure b (D) is nonnegative + copy_(a,eg_C); + copy_(b,eg_D); + leftShift_(v,g); + return; + } + } +} + + +//is bigInt x negative? +function negative(x) { + return ((x[x.length-1]>>(bpe-1))&1); +} + + +//is (x << (shift*bpe)) > y? +//x and y are nonnegative bigInts +//shift is a nonnegative integer +function greaterShift(x,y,shift) { + var kx=x.length, ky=y.length; + k=((kx+shift)=0; i++) + if (x[i]>0) + return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger + for (i=kx-1+shift; i0) + return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger + for (i=k-1; i>=shift; i--) + if (x[i-shift]>y[i]) return 1; + else if (x[i-shift] y? (x and y both nonnegative) +function greater(x,y) { + var i; + var k=(x.length=0;i--) + if (x[i]>y[i]) + return 1; + else if (x[i]ky;kx--); + + //normalize: ensure the most significant element of y has its highest bit set + b=y[ky-1]; + for (a=0; b; a++) + b>>=1; + a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element + leftShift_(y,a); //multiply both by 1<=ky; i--) { + if (r[i]==y[ky-1]) + q[i-ky]=mask; + else + q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]); + + //The following for(;;) loop is equivalent to the commented while loop, + //except that the uncommented version avoids overflow. + //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0 + // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2]) + // q[i-ky]--; + for (;;) { + y2=(ky>1 ? y[ky-2] : 0)*q[i-ky]; + c=y2>>bpe; + y2=y2 & mask; + y1=c+q[i-ky]*y[ky-1]; + c=y1>>bpe; + y1=y1 & mask; + + if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]) + q[i-ky]--; + else + break; + } + + linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky) + if (negative(r)) { + addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky) + q[i-ky]--; + } + } + + rightShift_(y,a); //undo the normalization step + rightShift_(r,a); //undo the normalization step +} + +//do carries and borrows so each element of the bigInt x fits in bpe bits. +function carry_(x) { + var i,k,c,b; + k=x.length; + c=0; + for (i=0;i>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + } +} + +//return x mod n for bigInt x and integer n. +function modInt(x,n) { + var i,c=0; + for (i=x.length-1; i>=0; i--) + c=(c*radix+x[i])%n; + return c; +} + +//convert the integer t into a bigInt with at least the given number of bits. +//the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word) +//Pad the array with leading zeros so that it has at least minSize elements. +//There will always be at least one leading 0 element. +function int2bigInt(t,bits,minSize) { + var i,k; + k=Math.ceil(bits/bpe)+1; + k=minSize>k ? minSize : k; + buff=new Array(k); + copyInt_(buff,t); + return buff; +} + +//return the bigInt given a string representation in a given base. +//Pad the array with leading zeros so that it has at least minSize elements. +//If base=-1, then it reads in a space-separated list of array elements in decimal. +//The array will always have at least one leading zero, unless base=-1. +function str2bigInt(s,base,minSize) { + var d, i, j, x, y, kk; + var k=s.length; + if (base==-1) { //comma-separated list of array elements in decimal + x=new Array(0); + for (;;) { + y=new Array(x.length+1); + for (i=0;i=36) //convert lowercase to uppercase if base<=36 + d-=26; + if (d=0) { //ignore illegal characters + multInt_(x,base); + addInt_(x,d); + } + } + + for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros + k=minSize>k+1 ? minSize : k+1; + y=new Array(k); + kk=ky.length) { + for (;i0;i--) + s+=x[i]+','; + s+=x[0]; + } + else { //return it in the given base + while (!isZero(s6)) { + t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base); + s=digitsStr.substring(t,t+1)+s; + } + } + if (s.length==0) + s="0"; + return s; +} + +//returns a duplicate of bigInt x +function dup(x) { + var i; + buff=new Array(x.length); + copy_(buff,x); + return buff; +} + +//do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y). +function copy_(x,y) { + var i; + var k=x.length>=bpe; + } +} + +//do x=x+n where x is a bigInt and n is an integer. +//x must be large enough to hold the result. +function addInt_(x,n) { + var i,k,c,b; + x[0]+=n; + k=x.length; + c=0; + for (i=0;i>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + if (!c) return; //stop carrying as soon as the carry_ is zero + } +} + +//right shift bigInt x by n bits. 0 <= n < bpe. +function rightShift_(x,n) { + var i; + var k=Math.floor(n/bpe); + if (k) { + for (i=0;i>n)); + } + x[i]>>=n; +} + +//do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement +function halve_(x) { + var i; + for (i=0;i>1)); + } + x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same +} + +//left shift bigInt x by n bits. +function leftShift_(x,n) { + var i; + var k=Math.floor(n/bpe); + if (k) { + for (i=x.length; i>=k; i--) //left shift x by k elements + x[i]=x[i-k]; + for (;i>=0;i--) + x[i]=0; + n%=bpe; + } + if (!n) + return; + for (i=x.length-1;i>0;i--) { + x[i]=mask & ((x[i]<>(bpe-n))); + } + x[i]=mask & (x[i]<>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + } +} + +//do x=floor(x/n) for bigInt x and integer n, and return the remainder +function divInt_(x,n) { + var i,r=0,s; + for (i=x.length-1;i>=0;i--) { + s=r*radix+x[i]; + x[i]=Math.floor(s/n); + r=s%n; + } + return r; +} + +//do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b. +//x must be large enough to hold the answer. +function linComb_(x,y,a,b) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;i>=bpe; + } +} + +//do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys. +//x must be large enough to hold the answer. +function linCombShift_(x,y,b,ys) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;c && i>=bpe; + } +} + +//do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. +//x must be large enough to hold the answer. +function addShift_(x,y,ys) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;c && i>=bpe; + } +} + +//do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. +//x must be large enough to hold the answer. +function subShift_(x,y,ys) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;c && i>=bpe; + } +} + +//do x=x-y for bigInts x and y. +//x must be large enough to hold the answer. +//negative answers will be 2s complement +function sub_(x,y) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;c && i>=bpe; + } +} + +//do x=x+y for bigInts x and y. +//x must be large enough to hold the answer. +function add_(x,y) { + var i,c,k,kk; + k=x.length>=bpe; + } + for (i=k;c && i>=bpe; + } +} + +//do x=x*y for bigInts x and y. This is faster when y0 && !x[kx-1]; kx--); //ignore leading zeros in x + k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n + if (s0.length!=k) + s0=new Array(k); + copyInt_(s0,0); + for (i=0;i>=bpe; + for (j=i+1;j>=bpe; + } + s0[i+kx]=c; + } + mod_(s0,n); + copy_(x,s0); +} + +//return x with exactly k leading zero elements +function trim(x,k) { + var i,y; + for (i=x.length; i>0 && !x[i-1]; i--); + y=new Array(i+k); + copy_(y,x); + return y; +} + +//do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1. +//this is faster when n is odd. x usually needs to have as many elements as n. +function powMod_(x,y,n) { + var k1,k2,kn,np; + if(s7.length!=n.length) + s7=dup(n); + + //for even modulus, use a simple square-and-multiply algorithm, + //rather than using the more complex Montgomery algorithm. + if ((n[0]&1)==0) { + copy_(s7,x); + copyInt_(x,1); + while(!equalsInt(y,0)) { + if (y[0]&1) + multMod_(x,s7,n); + divInt_(y,2); + squareMod_(s7,n); + } + return; + } + + //calculate np from n for the Montgomery multiplications + copyInt_(s7,0); + for (kn=n.length;kn>0 && !n[kn-1];kn--); + np=radix-inverseModInt_(modInt(n,radix),radix); + s7[kn]=1; + multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n + + if (s3.length!=x.length) + s3=dup(x); + else + copy_(s3,x); + + for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y + if (y[k1]==0) { //anything to the 0th power is 1 + copyInt_(x,1); + return; + } + for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1] + for (;;) { + if (!(k2>>=1)) { //look at next bit of y + k1--; + if (k1<0) { + mont_(x,one,n,np); + return; + } + k2=1<<(bpe-1); + } + mont_(x,x,n,np); + + if (k2 & y[k1]) //if next bit is a 1 + mont_(x,s3,n,np); + } +} + +//do x=x*y*Ri mod n for bigInts x,y,n, +// where Ri = 2**(-kn*bpe) mod n, and kn is the +// number of elements in the n array, not +// counting leading zeros. +//x must be large enough to hold the answer. +//It's OK if x and y are the same variable. +//must have: +// x,y < n +// n is odd +// np = -(n^(-1)) mod radix +function mont_(x,y,n,np) { + var i,j,c,ui,t; + var kn=n.length; + var ky=y.length; + + if (sa.length!=kn) + sa=new Array(kn); + + for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n + //this function sometimes gives wrong answers when the next line is uncommented + //for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y + + copyInt_(sa,0); + + //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large keys + for (i=0; i> bpe; + t=x[i]; + + //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe + for (j=1;j>=bpe; + } + for (;j>=bpe; + } + sa[j-1]=c & mask; + } + + if (!greater(n,sa)) + sub_(sa,n); + copy_(x,sa); +} + + + + +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# + + + + + +//############################################################################# + +Clipperz.Crypto.BigInt = function (aValue, aBase) { + var base; + var value; + + if (typeof(aValue) == 'object') { + this._internalValue = aValue; + } else { + if (typeof(aValue) == 'undefined') { + value = "0"; + } else { + value = aValue + ""; + } + + if (typeof(aBase) == 'undefined') { + base = 10; + } else { + base = aBase; + } + + this._internalValue = str2bigInt(value, base, 1, 1); + } + + return this; +} + +//============================================================================= + +MochiKit.Base.update(Clipperz.Crypto.BigInt.prototype, { + + 'clone': function() { + return new Clipperz.Crypto.BigInt(this.internalValue()); + }, + + //------------------------------------------------------------------------- + + 'internalValue': function () { + return this._internalValue; + }, + + //------------------------------------------------------------------------- + + 'isBigInt': true, + + //------------------------------------------------------------------------- + + 'toString': function(aBase) { + return this.asString(aBase); + }, + + //------------------------------------------------------------------------- + + 'asString': function (aBase, minimumLength) { + var result; + var base; + + if (typeof(aBase) == 'undefined') { + base = 10; + } else { + base = aBase; + } + + result = bigInt2str(this.internalValue(), base).toLowerCase(); + + if ((typeof(minimumLength) != 'undefined') && (result.length < minimumLength)) { + var i, c; + c = (minimumLength - result.length); + for (i=0; i 0) { + leftShift_(internalResult, bitsLeftToShift); + } + result = new Clipperz.Crypto.BigInt(internalResult); + + return result; + }, + + //------------------------------------------------------------------------- + + 'bitSize': function() { + return bitSize(this.internalValue()); + }, + + //------------------------------------------------------------------------- + + 'isBitSet': function(aBitPosition) { + var result; + + if (this.asByteArray().bitAtIndex(aBitPosition) == 0) { + result = false; + } else { + result = true; + }; + + return result; + }, + + //------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" + +}); + +//############################################################################# + +Clipperz.Crypto.BigInt.randomPrime = function(aBitSize) { + return new Clipperz.Crypto.BigInt(randTruePrime(aBitSize)); +} + +//############################################################################# +//############################################################################# + +Clipperz.Crypto.BigInt.ZERO = new Clipperz.Crypto.BigInt(0); + +//############################################################################# + +Clipperz.Crypto.BigInt.equals = function(a, b) { + return a.equals(b); +} + +Clipperz.Crypto.BigInt.add = function(a, b) { + return a.add(b); +} + +Clipperz.Crypto.BigInt.subtract = function(a, b) { + return a.subtract(b); +} + +Clipperz.Crypto.BigInt.multiply = function(a, b, module) { + return a.multiply(b, module); +} + +Clipperz.Crypto.BigInt.module = function(a, module) { + return a.module(module); +} + +Clipperz.Crypto.BigInt.powerModule = function(a, b, module) { + return a.powerModule(b, module); +} + +Clipperz.Crypto.BigInt.exception = { + UnknownType: new MochiKit.Base.NamedError("Clipperz.Crypto.BigInt.exception.UnknownType") +} -- cgit v0.9.0.2