From 07d0357beef5d9328a2dd8d07ad7b39c87ac55e4 Mon Sep 17 00:00:00 2001 From: Clipperz Date: Thu, 31 Jan 2013 13:42:04 +0000 Subject: Updated Copyright claims - updated reference dates; - removed reference to Community Edition; - normalized logging using Clipperz.log[Warn|Error|Debug] --- (limited to 'frontend/gamma/js/ClipperzCryptoLibrary/Base.js') diff --git a/frontend/gamma/js/ClipperzCryptoLibrary/Base.js b/frontend/gamma/js/ClipperzCryptoLibrary/Base.js new file mode 100644 index 0000000..9acfc49 --- a/dev/null +++ b/frontend/gamma/js/ClipperzCryptoLibrary/Base.js @@ -0,0 +1,1847 @@ +/* + +Copyright 2008-2013 Clipperz Srl + +This file is part of Clipperz, the online password manager. +For further information about its features and functionalities please +refer to http://www.clipperz.com. + +* Clipperz is free software: you can redistribute it and/or modify it + under the terms of the GNU Affero General Public License as published + by the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + +* Clipperz is distributed in the hope that it will be useful, but + WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Clipperz. If not, see http://www.gnu.org/licenses/. + +*/ + +try { if (typeof(Clipperz.Base) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.Base depends on Clipperz.Base!"; +} + +if (typeof(Clipperz.Crypto) == 'undefined') { Clipperz.Crypto = {}; } +if (typeof(Clipperz.Crypto.Base) == 'undefined') { Clipperz.Crypto.Base = {}; } + +Clipperz.Crypto.Base.VERSION = "0.1"; +Clipperz.Crypto.Base.NAME = "Clipperz.Crypto.Base"; + +//############################################################################# +// Downloaded on March 30, 2006 from http://anmar.eu.org/projects/jssha2/files/jssha2-0.3.zip (jsSha2/sha256.js) +//############################################################################# + +/* A JavaScript implementation of the Secure Hash Algorithm, SHA-256 + * Version 0.3 Copyright Angel Marin 2003-2004 - http://anmar.eu.org/ + * Distributed under the BSD License + * Some bits taken from Paul Johnston's SHA-1 implementation + */ +var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */ +function safe_add (x, y) { + var lsw = (x & 0xFFFF) + (y & 0xFFFF); + var msw = (x >> 16) + (y >> 16) + (lsw >> 16); + return (msw << 16) | (lsw & 0xFFFF); +} +function S (X, n) {return ( X >>> n ) | (X << (32 - n));} +function R (X, n) {return ( X >>> n );} +function Ch(x, y, z) {return ((x & y) ^ ((~x) & z));} +function Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));} +function Sigma0256(x) {return (S(x, 2) ^ S(x, 13) ^ S(x, 22));} +function Sigma1256(x) {return (S(x, 6) ^ S(x, 11) ^ S(x, 25));} +function Gamma0256(x) {return (S(x, 7) ^ S(x, 18) ^ R(x, 3));} +function Gamma1256(x) {return (S(x, 17) ^ S(x, 19) ^ R(x, 10));} +function core_sha256 (m, l) { + var K = new Array(0x428A2F98,0x71374491,0xB5C0FBCF,0xE9B5DBA5,0x3956C25B,0x59F111F1,0x923F82A4,0xAB1C5ED5,0xD807AA98,0x12835B01,0x243185BE,0x550C7DC3,0x72BE5D74,0x80DEB1FE,0x9BDC06A7,0xC19BF174,0xE49B69C1,0xEFBE4786,0xFC19DC6,0x240CA1CC,0x2DE92C6F,0x4A7484AA,0x5CB0A9DC,0x76F988DA,0x983E5152,0xA831C66D,0xB00327C8,0xBF597FC7,0xC6E00BF3,0xD5A79147,0x6CA6351,0x14292967,0x27B70A85,0x2E1B2138,0x4D2C6DFC,0x53380D13,0x650A7354,0x766A0ABB,0x81C2C92E,0x92722C85,0xA2BFE8A1,0xA81A664B,0xC24B8B70,0xC76C51A3,0xD192E819,0xD6990624,0xF40E3585,0x106AA070,0x19A4C116,0x1E376C08,0x2748774C,0x34B0BCB5,0x391C0CB3,0x4ED8AA4A,0x5B9CCA4F,0x682E6FF3,0x748F82EE,0x78A5636F,0x84C87814,0x8CC70208,0x90BEFFFA,0xA4506CEB,0xBEF9A3F7,0xC67178F2); + var HASH = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); + var W = new Array(64); + var a, b, c, d, e, f, g, h, i, j; + var T1, T2; + /* append padding */ + m[l >> 5] |= 0x80 << (24 - l % 32); + m[((l + 64 >> 9) << 4) + 15] = l; + for ( var i = 0; i>5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i%32); + return bin; +} +function binb2hex (binarray) { + var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ + var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; + var str = ""; + for (var i = 0; i < binarray.length * 4; i++) { + str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) + hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8 )) & 0xF); + } + return str; +} +function hex_sha256(s){return binb2hex(core_sha256(str2binb(s),s.length * chrsz));} + + + +//############################################################################# +// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (entropy.js) +//############################################################################# + + // Entropy collection utilities + + /* Start by declaring static storage and initialise + the entropy vector from the time we come through + here. */ + + var entropyData = new Array(); // Collected entropy data + var edlen = 0; // Keyboard array data length + + addEntropyTime(); // Start entropy collection with page load time + ce(); // Roll milliseconds into initial entropy + + // Add a byte to the entropy vector + + function addEntropyByte(b) { + entropyData[edlen++] = b; + } + + /* Capture entropy. When the user presses a key or performs + various other events for which we can request + notification, add the time in 255ths of a second to the + entropyData array. The name of the function is short + so it doesn't bloat the form object declarations in + which it appears in various "onXXX" events. */ + + function ce() { + addEntropyByte(Math.floor((((new Date).getMilliseconds()) * 255) / 999)); + } + + // Add a 32 bit quantity to the entropy vector + + function addEntropy32(w) { + var i; + + for (i = 0; i < 4; i++) { + addEntropyByte(w & 0xFF); + w >>= 8; + } + } + + /* Add the current time and date (milliseconds since the epoch, + truncated to 32 bits) to the entropy vector. */ + + function addEntropyTime() { + addEntropy32((new Date()).getTime()); + } + + /* Start collection of entropy from mouse movements. The + argument specifies the number of entropy items to be + obtained from mouse motion, after which mouse motion + will be ignored. Note that you can re-enable mouse + motion collection at any time if not already underway. */ + + var mouseMotionCollect = 0; + var oldMoveHandler; // For saving and restoring mouse move handler in IE4 + + function mouseMotionEntropy(maxsamp) { + if (mouseMotionCollect <= 0) { + mouseMotionCollect = maxsamp; + if ((document.implementation.hasFeature("Events", "2.0")) && + document.addEventListener) { + // Browser supports Document Object Model (DOM) 2 events + document.addEventListener("mousemove", mouseMoveEntropy, false); + } else { + if (document.attachEvent) { + // Internet Explorer 5 and above event model + document.attachEvent("onmousemove", mouseMoveEntropy); + } else { + // Internet Explorer 4 event model + oldMoveHandler = document.onmousemove; + document.onmousemove = mouseMoveEntropy; + } + } +//dump("Mouse enable", mouseMotionCollect); + } + } + + /* Collect entropy from mouse motion events. Note that + this is craftily coded to work with either DOM2 or Internet + Explorer style events. Note that we don't use every successive + mouse movement event. Instead, we XOR the three bytes collected + from the mouse and use that to determine how many subsequent + mouse movements we ignore before capturing the next one. */ + + var mouseEntropyTime = 0; // Delay counter for mouse entropy collection + + function mouseMoveEntropy(e) { + if (!e) { + e = window.event; // Internet Explorer event model + } + if (mouseMotionCollect > 0) { + if (mouseEntropyTime-- <= 0) { + addEntropyByte(e.screenX & 0xFF); + addEntropyByte(e.screenY & 0xFF); + ce(); + mouseMotionCollect--; + mouseEntropyTime = (entropyData[edlen - 3] ^ entropyData[edlen - 2] ^ + entropyData[edlen - 1]) % 19; +//dump("Mouse Move", byteArrayToHex(entropyData.slice(-3))); + } + if (mouseMotionCollect <= 0) { + if (document.removeEventListener) { + document.removeEventListener("mousemove", mouseMoveEntropy, false); + } else if (document.detachEvent) { + document.detachEvent("onmousemove", mouseMoveEntropy); + } else { + document.onmousemove = oldMoveHandler; + } +//dump("Spung!", 0); + } + } + } + + /* Compute a 32 byte key value from the entropy vector. + We compute the value by taking the MD5 sum of the even + and odd bytes respectively of the entropy vector, then + concatenating the two MD5 sums. */ + + function keyFromEntropy() { + var i, k = new Array(32); + + if (edlen == 0) { + alert("Blooie! Entropy vector void at call to keyFromEntropy."); + } +//dump("Entropy bytes", edlen); + + md5_init(); + for (i = 0; i < edlen; i += 2) { + md5_update(entropyData[i]); + } + md5_finish(); + for (i = 0; i < 16; i++) { + k[i] = digestBits[i]; + } + + md5_init(); + for (i = 1; i < edlen; i += 2) { + md5_update(entropyData[i]); + } + md5_finish(); + for (i = 0; i < 16; i++) { + k[i + 16] = digestBits[i]; + } + +//dump("keyFromEntropy", byteArrayToHex(k)); + return k; + } + +//############################################################################# +// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (aesprng.js) +//############################################################################# + + + // AES based pseudorandom number generator + + /* Constructor. Called with an array of 32 byte (0-255) values + containing the initial seed. */ + + function AESprng(seed) { + this.key = new Array(); + this.key = seed; + this.itext = hexToByteArray("9F489613248148F9C27945C6AE62EECA3E3367BB14064E4E6DC67A9F28AB3BD1"); + this.nbytes = 0; // Bytes left in buffer + + this.next = AESprng_next; + this.nextbits = AESprng_nextbits; + this.nextInt = AESprng_nextInt; + this.round = AESprng_round; + + /* Encrypt the initial text with the seed key + three times, feeding the output of the encryption + back into the key for the next round. */ + + bsb = blockSizeInBits; + blockSizeInBits = 256; + var i, ct; + for (i = 0; i < 3; i++) { + this.key = rijndaelEncrypt(this.itext, this.key, "ECB"); + } + + /* Now make between one and four additional + key-feedback rounds, with the number determined + by bits from the result of the first three + rounds. */ + + var n = 1 + (this.key[3] & 2) + (this.key[9] & 1); + for (i = 0; i < n; i++) { + this.key = rijndaelEncrypt(this.itext, this.key, "ECB"); + } + blockSizeInBits = bsb; + } + + function AESprng_round() { + bsb = blockSizeInBits; + blockSizeInBits = 256; + this.key = rijndaelEncrypt(this.itext, this.key, "ECB"); + this.nbytes = 32; + blockSizeInBits = bsb; + } + + // Return next byte from the generator + + function AESprng_next() { + if (this.nbytes <= 0) { + this.round(); + } + return(this.key[--this.nbytes]); + } + + // Return n bit integer value (up to maximum integer size) + + function AESprng_nextbits(n) { + var i, w = 0, nbytes = Math.floor((n + 7) / 8); + + for (i = 0; i < nbytes; i++) { + w = (w << 8) | this.next(); + } + return w & ((1 << n) - 1); + } + + // Return integer between 0 and n inclusive + + function AESprng_nextInt(n) { + var p = 1, nb = 0; + + // Determine smallest p, 2^p > n + // nb = log_2 p + + while (n >= p) { + p <<= 1; + nb++; + } + p--; + + /* Generate values from 0 through n by first generating + values v from 0 to (2^p)-1, then discarding any results v > n. + For the rationale behind this (and why taking + values mod (n + 1) is biased toward smaller values, see + Ferguson and Schneier, "Practical Cryptography", + ISBN 0-471-22357-3, section 10.8). */ + + while (true) { + var v = this.nextbits(nb) & p; + + if (v <= n) { + return v; + } + } + } + +//############################################################################# +// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (md5.js) +//############################################################################# + +/* + * md5.jvs 1.0b 27/06/96 + * + * Javascript implementation of the RSA Data Security, Inc. MD5 + * Message-Digest Algorithm. + * + * Copyright (c) 1996 Henri Torgemane. All Rights Reserved. + * + * Permission to use, copy, modify, and distribute this software + * and its documentation for any purposes and without + * fee is hereby granted provided that this copyright notice + * appears in all copies. + * + * Of course, this soft is provided "as is" without express or implied + * warranty of any kind. + + This version contains some trivial reformatting modifications + by John Walker. + + */ + +function array(n) { + for (i = 0; i < n; i++) { + this[i] = 0; + } + this.length = n; +} + +/* Some basic logical functions had to be rewritten because of a bug in + * Javascript.. Just try to compute 0xffffffff >> 4 with it.. + * Of course, these functions are slower than the original would be, but + * at least, they work! + */ + +function integer(n) { + return n % (0xffffffff + 1); +} + +function shr(a, b) { + a = integer(a); + b = integer(b); + if (a - 0x80000000 >= 0) { + a = a % 0x80000000; + a >>= b; + a += 0x40000000 >> (b - 1); + } else { + a >>= b; + } + return a; +} + +function shl1(a) { + a = a % 0x80000000; + if (a & 0x40000000 == 0x40000000) { + a -= 0x40000000; + a *= 2; + a += 0x80000000; + } else { + a *= 2; + } + return a; +} + +function shl(a, b) { + a = integer(a); + b = integer(b); + for (var i = 0; i < b; i++) { + a = shl1(a); + } + return a; +} + +function and(a, b) { + a = integer(a); + b = integer(b); + var t1 = a - 0x80000000; + var t2 = b - 0x80000000; + if (t1 >= 0) { + if (t2 >= 0) { + return ((t1 & t2) + 0x80000000); + } else { + return (t1 & b); + } + } else { + if (t2 >= 0) { + return (a & t2); + } else { + return (a & b); + } + } +} + +function or(a, b) { + a = integer(a); + b = integer(b); + var t1 = a - 0x80000000; + var t2 = b - 0x80000000; + if (t1 >= 0) { + if (t2 >= 0) { + return ((t1 | t2) + 0x80000000); + } else { + return ((t1 | b) + 0x80000000); + } + } else { + if (t2 >= 0) { + return ((a | t2) + 0x80000000); + } else { + return (a | b); + } + } +} + +function xor(a, b) { + a = integer(a); + b = integer(b); + var t1 = a - 0x80000000; + var t2 = b - 0x80000000; + if (t1 >= 0) { + if (t2 >= 0) { + return (t1 ^ t2); + } else { + return ((t1 ^ b) + 0x80000000); + } + } else { + if (t2 >= 0) { + return ((a ^ t2) + 0x80000000); + } else { + return (a ^ b); + } + } +} + +function not(a) { + a = integer(a); + return 0xffffffff - a; +} + +/* Here begin the real algorithm */ + +var state = new array(4); +var count = new array(2); + count[0] = 0; + count[1] = 0; +var buffer = new array(64); +var transformBuffer = new array(16); +var digestBits = new array(16); + +var S11 = 7; +var S12 = 12; +var S13 = 17; +var S14 = 22; +var S21 = 5; +var S22 = 9; +var S23 = 14; +var S24 = 20; +var S31 = 4; +var S32 = 11; +var S33 = 16; +var S34 = 23; +var S41 = 6; +var S42 = 10; +var S43 = 15; +var S44 = 21; + +function F(x, y, z) { + return or(and(x, y), and(not(x), z)); +} + +function G(x, y, z) { + return or(and(x, z), and(y, not(z))); +} + +function H(x, y, z) { + return xor(xor(x, y), z); +} + +function I(x, y, z) { + return xor(y ,or(x , not(z))); +} + +function rotateLeft(a, n) { + return or(shl(a, n), (shr(a, (32 - n)))); +} + +function FF(a, b, c, d, x, s, ac) { + a = a + F(b, c, d) + x + ac; + a = rotateLeft(a, s); + a = a + b; + return a; +} + +function GG(a, b, c, d, x, s, ac) { + a = a + G(b, c, d) + x + ac; + a = rotateLeft(a, s); + a = a + b; + return a; +} + +function HH(a, b, c, d, x, s, ac) { + a = a + H(b, c, d) + x + ac; + a = rotateLeft(a, s); + a = a + b; + return a; +} + +function II(a, b, c, d, x, s, ac) { + a = a + I(b, c, d) + x + ac; + a = rotateLeft(a, s); + a = a + b; + return a; +} + +function transform(buf, offset) { + var a = 0, b = 0, c = 0, d = 0; + var x = transformBuffer; + + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + + for (i = 0; i < 16; i++) { + x[i] = and(buf[i * 4 + offset], 0xFF); + for (j = 1; j < 4; j++) { + x[i] += shl(and(buf[i * 4 + j + offset] ,0xFF), j * 8); + } + } + + /* Round 1 */ + a = FF( a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ + d = FF( d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ + c = FF( c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ + b = FF( b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ + a = FF( a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ + d = FF( d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ + c = FF( c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ + b = FF( b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ + a = FF( a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ + d = FF( d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ + c = FF( c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ + b = FF( b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ + a = FF( a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ + d = FF( d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ + c = FF( c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ + b = FF( b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ + + /* Round 2 */ + a = GG( a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ + d = GG( d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ + c = GG( c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ + b = GG( b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ + a = GG( a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ + d = GG( d, a, b, c, x[10], S22, 0x2441453); /* 22 */ + c = GG( c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ + b = GG( b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ + a = GG( a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ + d = GG( d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ + c = GG( c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ + b = GG( b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ + a = GG( a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ + d = GG( d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ + c = GG( c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ + b = GG( b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ + + /* Round 3 */ + a = HH( a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ + d = HH( d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ + c = HH( c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ + b = HH( b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ + a = HH( a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ + d = HH( d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ + c = HH( c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ + b = HH( b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ + a = HH( a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ + d = HH( d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ + c = HH( c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ + b = HH( b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */ + a = HH( a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ + d = HH( d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ + c = HH( c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ + b = HH( b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ + + /* Round 4 */ + a = II( a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ + d = II( d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ + c = II( c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ + b = II( b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ + a = II( a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ + d = II( d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ + c = II( c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ + b = II( b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ + a = II( a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ + d = II( d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ + c = II( c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ + b = II( b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ + a = II( a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ + d = II( d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ + c = II( c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ + b = II( b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ + + state[0] += a; + state[1] += b; + state[2] += c; + state[3] += d; + +} + +function md5_init() { + count[0] = count[1] = 0; + state[0] = 0x67452301; + state[1] = 0xefcdab89; + state[2] = 0x98badcfe; + state[3] = 0x10325476; + for (i = 0; i < digestBits.length; i++) { + digestBits[i] = 0; + } +} + +function md5_update(b) { + var index, i; + + index = and(shr(count[0],3) , 0x3F); + if (count[0] < 0xFFFFFFFF - 7) { + count[0] += 8; + } else { + count[1]++; + count[0] -= 0xFFFFFFFF + 1; + count[0] += 8; + } + buffer[index] = and(b, 0xff); + if (index >= 63) { + transform(buffer, 0); + } +} + +function md5_finish() { + var bits = new array(8); + var padding; + var i = 0, index = 0, padLen = 0; + + for (i = 0; i < 4; i++) { + bits[i] = and(shr(count[0], (i * 8)), 0xFF); + } + for (i = 0; i < 4; i++) { + bits[i + 4] = and(shr(count[1], (i * 8)), 0xFF); + } + index = and(shr(count[0], 3), 0x3F); + padLen = (index < 56) ? (56 - index) : (120 - index); + padding = new array(64); + padding[0] = 0x80; + for (i = 0; i < padLen; i++) { + md5_update(padding[i]); + } + for (i = 0; i < 8; i++) { + md5_update(bits[i]); + } + + for (i = 0; i < 4; i++) { + for (j = 0; j < 4; j++) { + digestBits[i * 4 + j] = and(shr(state[i], (j * 8)) , 0xFF); + } + } +} + +/* End of the MD5 algorithm */ + +//############################################################################# +// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (aes.js) +//############################################################################# + + +/* rijndael.js Rijndael Reference Implementation + + This is a modified version of the software described below, + produced in September 2003 by John Walker for use in the + JavsScrypt browser-based encryption package. The principal + changes are replacing the original getRandomBytes function with + one which calls our pseudorandom generator (which must + be instantiated and seeded before the first call on getRandomBytes), + and changing keySizeInBits to 256. Some code not required by the + JavsScrypt application has been commented out. Please see + http://www.fourmilab.ch/javascrypt/ for further information on + JavaScrypt. + + The following is the original copyright and application + information. + + Copyright (c) 2001 Fritz Schneider + + This software is provided as-is, without express or implied warranty. + Permission to use, copy, modify, distribute or sell this software, with or + without fee, for any purpose and by any individual or organization, is hereby + granted, provided that the above copyright notice and this paragraph appear + in all copies. Distribution as a part of an application or binary must + include the above copyright notice in the documentation and/or other materials + provided with the application or distribution. + + As the above disclaimer notes, you are free to use this code however you + want. However, I would request that you send me an email + (fritz /at/ cs /dot/ ucsd /dot/ edu) to say hi if you find this code useful + or instructional. Seeing that people are using the code acts as + encouragement for me to continue development. If you *really* want to thank + me you can buy the book I wrote with Thomas Powell, _JavaScript: + _The_Complete_Reference_ :) + + This code is an UNOPTIMIZED REFERENCE implementation of Rijndael. + If there is sufficient interest I can write an optimized (word-based, + table-driven) version, although you might want to consider using a + compiled language if speed is critical to your application. As it stands, + one run of the monte carlo test (10,000 encryptions) can take up to + several minutes, depending upon your processor. You shouldn't expect more + than a few kilobytes per second in throughput. + + Also note that there is very little error checking in these functions. + Doing proper error checking is always a good idea, but the ideal + implementation (using the instanceof operator and exceptions) requires + IE5+/NS6+, and I've chosen to implement this code so that it is compatible + with IE4/NS4. + + And finally, because JavaScript doesn't have an explicit byte/char data + type (although JavaScript 2.0 most likely will), when I refer to "byte" + in this code I generally mean "32 bit integer with value in the interval + [0,255]" which I treat as a byte. + + See http://www-cse.ucsd.edu/~fritz/rijndael.html for more documentation + of the (very simple) API provided by this code. + + Fritz Schneider + fritz at cs.ucsd.edu + +*/ + + +// Rijndael parameters -- Valid values are 128, 192, or 256 + +var keySizeInBits = 256; +var blockSizeInBits = 128; + +// +// Note: in the following code the two dimensional arrays are indexed as +// you would probably expect, as array[row][column]. The state arrays +// are 2d arrays of the form state[4][Nb]. + + +// The number of rounds for the cipher, indexed by [Nk][Nb] +var roundsArray = [ ,,,,[,,,,10,, 12,, 14],, + [,,,,12,, 12,, 14],, + [,,,,14,, 14,, 14] ]; + +// The number of bytes to shift by in shiftRow, indexed by [Nb][row] +var shiftOffsets = [ ,,,,[,1, 2, 3],,[,1, 2, 3],,[,1, 3, 4] ]; + +// The round constants used in subkey expansion +var Rcon = [ +0x01, 0x02, 0x04, 0x08, 0x10, 0x20, +0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, +0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, +0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, +0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 ]; + +// Precomputed lookup table for the SBox +var SBox = [ + 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, +118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, +114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, +216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, +235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, +179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, +190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, +249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, +188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, +23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, +144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, + 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, +141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, + 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, +181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, +248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, +140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, + 22 ]; + +// Precomputed lookup table for the inverse SBox +var SBoxInverse = [ + 82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215, +251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222, +233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66, +250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73, +109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92, +204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21, + 70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247, +228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2, +193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220, +234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173, + 53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29, + 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75, +198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168, + 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81, +127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160, +224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97, + 23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12, +125 ]; + +// This method circularly shifts the array left by the number of elements +// given in its parameter. It returns the resulting array and is used for +// the ShiftRow step. Note that shift() and push() could be used for a more +// elegant solution, but they require IE5.5+, so I chose to do it manually. + +function cyclicShiftLeft(theArray, positions) { + var temp = theArray.slice(0, positions); + theArray = theArray.slice(positions).concat(temp); + return theArray; +} + +// Cipher parameters ... do not change these +var Nk = keySizeInBits / 32; +var Nb = blockSizeInBits / 32; +var Nr = roundsArray[Nk][Nb]; + +// Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec. + +function xtime(poly) { + poly <<= 1; + return ((poly & 0x100) ? (poly ^ 0x11B) : (poly)); +} + +// Multiplies the two elements of GF(2^8) together and returns the result. +// See the Rijndael spec, but should be straightforward: for each power of +// the indeterminant that has a 1 coefficient in x, add y times that power +// to the result. x and y should be bytes representing elements of GF(2^8) + +function mult_GF256(x, y) { + var bit, result = 0; + + for (bit = 1; bit < 256; bit *= 2, y = xtime(y)) { + if (x & bit) + result ^= y; + } + return result; +} + +// Performs the substitution step of the cipher. State is the 2d array of +// state information (see spec) and direction is string indicating whether +// we are performing the forward substitution ("encrypt") or inverse +// substitution (anything else) + +function byteSub(state, direction) { + var S; + if (direction == "encrypt") // Point S to the SBox we're using + S = SBox; + else + S = SBoxInverse; + for (var i = 0; i < 4; i++) // Substitute for every byte in state + for (var j = 0; j < Nb; j++) + state[i][j] = S[state[i][j]]; +} + +// Performs the row shifting step of the cipher. + +function shiftRow(state, direction) { + for (var i=1; i<4; i++) // Row 0 never shifts + if (direction == "encrypt") + state[i] = cyclicShiftLeft(state[i], shiftOffsets[Nb][i]); + else + state[i] = cyclicShiftLeft(state[i], Nb - shiftOffsets[Nb][i]); + +} + +// Performs the column mixing step of the cipher. Most of these steps can +// be combined into table lookups on 32bit values (at least for encryption) +// to greatly increase the speed. + +function mixColumn(state, direction) { + var b = []; // Result of matrix multiplications + for (var j = 0; j < Nb; j++) { // Go through each column... + for (var i = 0; i < 4; i++) { // and for each row in the column... + if (direction == "encrypt") + b[i] = mult_GF256(state[i][j], 2) ^ // perform mixing + mult_GF256(state[(i+1)%4][j], 3) ^ + state[(i+2)%4][j] ^ + state[(i+3)%4][j]; + else + b[i] = mult_GF256(state[i][j], 0xE) ^ + mult_GF256(state[(i+1)%4][j], 0xB) ^ + mult_GF256(state[(i+2)%4][j], 0xD) ^ + mult_GF256(state[(i+3)%4][j], 9); + } + for (var i = 0; i < 4; i++) // Place result back into column + state[i][j] = b[i]; + } +} + +// Adds the current round key to the state information. Straightforward. + +function addRoundKey(state, roundKey) { + for (var j = 0; j < Nb; j++) { // Step through columns... + state[0][j] ^= (roundKey[j] & 0xFF); // and XOR + state[1][j] ^= ((roundKey[j]>>8) & 0xFF); + state[2][j] ^= ((roundKey[j]>>16) & 0xFF); + state[3][j] ^= ((roundKey[j]>>24) & 0xFF); + } +} + +// This function creates the expanded key from the input (128/192/256-bit) +// key. The parameter key is an array of bytes holding the value of the key. +// The returned value is an array whose elements are the 32-bit words that +// make up the expanded key. + +function keyExpansion(key) { + var expandedKey = new Array(); + var temp; + + // in case the key size or parameters were changed... + Nk = keySizeInBits / 32; + Nb = blockSizeInBits / 32; + Nr = roundsArray[Nk][Nb]; + + for (var j=0; j < Nk; j++) // Fill in input key first + expandedKey[j] = + (key[4*j]) | (key[4*j+1]<<8) | (key[4*j+2]<<16) | (key[4*j+3]<<24); + + // Now walk down the rest of the array filling in expanded key bytes as + // per Rijndael's spec + for (j = Nk; j < Nb * (Nr + 1); j++) { // For each word of expanded key + temp = expandedKey[j - 1]; + if (j % Nk == 0) + temp = ( (SBox[(temp>>8) & 0xFF]) | + (SBox[(temp>>16) & 0xFF]<<8) | + (SBox[(temp>>24) & 0xFF]<<16) | + (SBox[temp & 0xFF]<<24) ) ^ Rcon[Math.floor(j / Nk) - 1]; + else if (Nk > 6 && j % Nk == 4) + temp = (SBox[(temp>>24) & 0xFF]<<24) | + (SBox[(temp>>16) & 0xFF]<<16) | + (SBox[(temp>>8) & 0xFF]<<8) | + (SBox[temp & 0xFF]); + expandedKey[j] = expandedKey[j-Nk] ^ temp; + } + return expandedKey; +} + +// Rijndael's round functions... + +function Round(state, roundKey) { + byteSub(state, "encrypt"); + shiftRow(state, "encrypt"); + mixColumn(state, "encrypt"); + addRoundKey(state, roundKey); +} + +function InverseRound(state, roundKey) { + addRoundKey(state, roundKey); + mixColumn(state, "decrypt"); + shiftRow(state, "decrypt"); + byteSub(state, "decrypt"); +} + +function FinalRound(state, roundKey) { + byteSub(state, "encrypt"); + shiftRow(state, "encrypt"); + addRoundKey(state, roundKey); +} + +function InverseFinalRound(state, roundKey){ + addRoundKey(state, roundKey); + shiftRow(state, "decrypt"); + byteSub(state, "decrypt"); +} + +// encrypt is the basic encryption function. It takes parameters +// block, an array of bytes representing a plaintext block, and expandedKey, +// an array of words representing the expanded key previously returned by +// keyExpansion(). The ciphertext block is returned as an array of bytes. + +function encrypt(block, expandedKey) { + var i; + if (!block || block.length*8 != blockSizeInBits) + return; + if (!expandedKey) + return; + + block = packBytes(block); + addRoundKey(block, expandedKey); + for (i=1; i0; i--) + InverseRound(block, expandedKey.slice(Nb*i, Nb*(i+1))); + addRoundKey(block, expandedKey); + return unpackBytes(block); +} + +/* !NEEDED +// This method takes a byte array (byteArray) and converts it to a string by +// applying String.fromCharCode() to each value and concatenating the result. +// The resulting string is returned. Note that this function SKIPS zero bytes +// under the assumption that they are padding added in formatPlaintext(). +// Obviously, do not invoke this method on raw data that can contain zero +// bytes. It is really only appropriate for printable ASCII/Latin-1 +// values. Roll your own function for more robust functionality :) + +function byteArrayToString(byteArray) { + var result = ""; + for(var i=0; i "10ff". The function returns a +// string. + +function byteArrayToHex(byteArray) { + var result = ""; + if (!byteArray) + return; + for (var i=0; i [16, 255]. This +// function returns an array. + +function hexToByteArray(hexString) { + var byteArray = []; + if (hexString.length % 2) // must have even length + return; + if (hexString.indexOf("0x") == 0 || hexString.indexOf("0X") == 0) + hexString = hexString.substring(2); + for (var i = 0; i 0) { +//alert("adding " + (bpb - 1) + " bytes"); +// plaintext = plaintext.concat(getRandomBytes(bpb - i)); + { + var paddingBytes; + var ii,cc; + + paddingBytes = new Array(); + cc = bpb - i; + for (ii=0; ii0; block--) { + aBlock = + decrypt(ciphertext.slice(block*bpb,(block+1)*bpb), expandedKey); + if (mode == "CBC") + for (var i=0; i= 0x80) && (c <= 0x7FF)) { + // 0x80 - 0x7FF: Output as two byte code, 0xC0 in first byte + // 0x80 in second byte + utf8 += String.fromCharCode((c >> 6) | 0xC0); + utf8 += String.fromCharCode((c & 0x3F) | 0x80); + } else { + // 0x800 - 0xFFFF: Output as three bytes, 0xE0 in first byte + // 0x80 in second byte + // 0x80 in third byte + utf8 += String.fromCharCode((c >> 12) | 0xE0); + utf8 += String.fromCharCode(((c >> 6) & 0x3F) | 0x80); + utf8 += String.fromCharCode((c & 0x3F) | 0x80); + } + } + return utf8; + } + + // UTF8_TO_UNICODE -- Decode UTF-8 argument into Unicode string return value + + function utf8_to_unicode(utf8) { + var s = "", i = 0, b1, b2, b2; + + while (i < utf8.length) { + b1 = utf8.charCodeAt(i); + if (b1 < 0x80) { // One byte code: 0x00 0x7F + s += String.fromCharCode(b1); + i++; + } else if((b1 >= 0xC0) && (b1 < 0xE0)) { // Two byte code: 0x80 - 0x7FF + b2 = utf8.charCodeAt(i + 1); + s += String.fromCharCode(((b1 & 0x1F) << 6) | (b2 & 0x3F)); + i += 2; + } else { // Three byte code: 0x800 - 0xFFFF + b2 = utf8.charCodeAt(i + 1); + b3 = utf8.charCodeAt(i + 2); + s += String.fromCharCode(((b1 & 0xF) << 12) | + ((b2 & 0x3F) << 6) | + (b3 & 0x3F)); + i += 3; + } + } + return s; + } + + /* ENCODE_UTF8 -- Encode string as UTF8 only if it contains + a character of 0x9D (Unicode OPERATING + SYSTEM COMMAND) or a character greater + than 0xFF. This permits all strings + consisting exclusively of 8 bit + graphic characters to be encoded as + themselves. We choose 0x9D as the sentinel + character as opposed to one of the more + logical PRIVATE USE characters because 0x9D + is not overloaded by the regrettable + "Windows-1252" character set. Now such characters + don't belong in JavaScript strings, but you never + know what somebody is going to paste into a + text box, so this choice keeps Windows-encoded + strings from bloating to UTF-8 encoding. */ + + function encode_utf8(s) { + var i, necessary = false; + + for (i = 0; i < s.length; i++) { + if ((s.charCodeAt(i) == 0x9D) || + (s.charCodeAt(i) > 0xFF)) { + necessary = true; + break; + } + } + if (!necessary) { + return s; + } + return String.fromCharCode(0x9D) + unicode_to_utf8(s); + } + + /* DECODE_UTF8 -- Decode a string encoded with encode_utf8 + above. If the string begins with the + sentinel character 0x9D (OPERATING + SYSTEM COMMAND), then we decode the + balance as a UTF-8 stream. Otherwise, + the string is output unchanged, as + it's guaranteed to contain only 8 bit + characters excluding 0x9D. */ + + function decode_utf8(s) { + if ((s.length > 0) && (s.charCodeAt(0) == 0x9D)) { + return utf8_to_unicode(s.substring(1)); + } + return s; + } + + +//############################################################################# +// Downloaded on April 26, 2006 from http://pajhome.org.uk/crypt/md5/md5.js +//############################################################################# + +/* + * A JavaScript implementation of the RSA Data Security, Inc. MD5 Message + * Digest Algorithm, as defined in RFC 1321. + * Version 2.1 Copyright (C) Paul Johnston 1999 - 2002. + * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet + * Distributed under the BSD License + * See http://pajhome.org.uk/crypt/md5 for more info. + */ + +/* + * Configurable variables. You may need to tweak these to be compatible with + * the server-side, but the defaults work in most cases. + */ +var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ +var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ +var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */ + +/* + * These are the functions you'll usually want to call + * They take string arguments and return either hex or base-64 encoded strings + */ +function hex_md5(s){ return binl2hex(core_md5(str2binl(s), s.length * chrsz));} +function b64_md5(s){ return binl2b64(core_md5(str2binl(s), s.length * chrsz));} +function str_md5(s){ return binl2str(core_md5(str2binl(s), s.length * chrsz));} +function hex_hmac_md5(key, data) { return binl2hex(core_hmac_md5(key, data)); } +function b64_hmac_md5(key, data) { return binl2b64(core_hmac_md5(key, data)); } +function str_hmac_md5(key, data) { return binl2str(core_hmac_md5(key, data)); } + +/* + * Perform a simple self-test to see if the VM is working + */ +function md5_vm_test() +{ + return hex_md5("abc") == "900150983cd24fb0d6963f7d28e17f72"; +} + +/* + * Calculate the MD5 of an array of little-endian words, and a bit length + */ +function core_md5(x, len) +{ + /* append padding */ + x[len >> 5] |= 0x80 << ((len) % 32); + x[(((len + 64) >>> 9) << 4) + 14] = len; + + var a = 1732584193; + var b = -271733879; + var c = -1732584194; + var d = 271733878; + + for(var i = 0; i < x.length; i += 16) + { + var olda = a; + var oldb = b; + var oldc = c; + var oldd = d; + + a = md5_ff(a, b, c, d, x[i+ 0], 7 , -680876936); + d = md5_ff(d, a, b, c, x[i+ 1], 12, -389564586); + c = md5_ff(c, d, a, b, x[i+ 2], 17, 606105819); + b = md5_ff(b, c, d, a, x[i+ 3], 22, -1044525330); + a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897); + d = md5_ff(d, a, b, c, x[i+ 5], 12, 1200080426); + c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341); + b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983); + a = md5_ff(a, b, c, d, x[i+ 8], 7 , 1770035416); + d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417); + c = md5_ff(c, d, a, b, x[i+10], 17, -42063); + b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162); + a = md5_ff(a, b, c, d, x[i+12], 7 , 1804603682); + d = md5_ff(d, a, b, c, x[i+13], 12, -40341101); + c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290); + b = md5_ff(b, c, d, a, x[i+15], 22, 1236535329); + + a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510); + d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632); + c = md5_gg(c, d, a, b, x[i+11], 14, 643717713); + b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302); + a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691); + d = md5_gg(d, a, b, c, x[i+10], 9 , 38016083); + c = md5_gg(c, d, a, b, x[i+15], 14, -660478335); + b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848); + a = md5_gg(a, b, c, d, x[i+ 9], 5 , 568446438); + d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690); + c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961); + b = md5_gg(b, c, d, a, x[i+ 8], 20, 1163531501); + a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467); + d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784); + c = md5_gg(c, d, a, b, x[i+ 7], 14, 1735328473); + b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734); + + a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558); + d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463); + c = md5_hh(c, d, a, b, x[i+11], 16, 1839030562); + b = md5_hh(b, c, d, a, x[i+14], 23, -35309556); + a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060); + d = md5_hh(d, a, b, c, x[i+ 4], 11, 1272893353); + c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632); + b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640); + a = md5_hh(a, b, c, d, x[i+13], 4 , 681279174); + d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222); + c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979); + b = md5_hh(b, c, d, a, x[i+ 6], 23, 76029189); + a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487); + d = md5_hh(d, a, b, c, x[i+12], 11, -421815835); + c = md5_hh(c, d, a, b, x[i+15], 16, 530742520); + b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651); + + a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844); + d = md5_ii(d, a, b, c, x[i+ 7], 10, 1126891415); + c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905); + b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055); + a = md5_ii(a, b, c, d, x[i+12], 6 , 1700485571); + d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606); + c = md5_ii(c, d, a, b, x[i+10], 15, -1051523); + b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799); + a = md5_ii(a, b, c, d, x[i+ 8], 6 , 1873313359); + d = md5_ii(d, a, b, c, x[i+15], 10, -30611744); + c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380); + b = md5_ii(b, c, d, a, x[i+13], 21, 1309151649); + a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070); + d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379); + c = md5_ii(c, d, a, b, x[i+ 2], 15, 718787259); + b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551); + + a = safe_add(a, olda); + b = safe_add(b, oldb); + c = safe_add(c, oldc); + d = safe_add(d, oldd); + } + return Array(a, b, c, d); + +} + +/* + * These functions implement the four basic operations the algorithm uses. + */ +function md5_cmn(q, a, b, x, s, t) +{ + return safe_add(bit_rol(safe_add(safe_add(a, q), safe_add(x, t)), s),b); +} +function md5_ff(a, b, c, d, x, s, t) +{ + return md5_cmn((b & c) | ((~b) & d), a, b, x, s, t); +} +function md5_gg(a, b, c, d, x, s, t) +{ + return md5_cmn((b & d) | (c & (~d)), a, b, x, s, t); +} +function md5_hh(a, b, c, d, x, s, t) +{ + return md5_cmn(b ^ c ^ d, a, b, x, s, t); +} +function md5_ii(a, b, c, d, x, s, t) +{ + return md5_cmn(c ^ (b | (~d)), a, b, x, s, t); +} + +/* + * Calculate the HMAC-MD5, of a key and some data + */ +function core_hmac_md5(key, data) +{ + var bkey = str2binl(key); + if(bkey.length > 16) bkey = core_md5(bkey, key.length * chrsz); + + var ipad = Array(16), opad = Array(16); + for(var i = 0; i < 16; i++) + { + ipad[i] = bkey[i] ^ 0x36363636; + opad[i] = bkey[i] ^ 0x5C5C5C5C; + } + + var hash = core_md5(ipad.concat(str2binl(data)), 512 + data.length * chrsz); + return core_md5(opad.concat(hash), 512 + 128); +} + +/* + * Add integers, wrapping at 2^32. This uses 16-bit operations internally + * to work around bugs in some JS interpreters. + */ +function safe_add(x, y) +{ + var lsw = (x & 0xFFFF) + (y & 0xFFFF); + var msw = (x >> 16) + (y >> 16) + (lsw >> 16); + return (msw << 16) | (lsw & 0xFFFF); +} + +/* + * Bitwise rotate a 32-bit number to the left. + */ +function bit_rol(num, cnt) +{ + return (num << cnt) | (num >>> (32 - cnt)); +} + +/* + * Convert a string to an array of little-endian words + * If chrsz is ASCII, characters >255 have their hi-byte silently ignored. + */ +function str2binl(str) +{ + var bin = Array(); + var mask = (1 << chrsz) - 1; + for(var i = 0; i < str.length * chrsz; i += chrsz) + bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (i%32); + return bin; +} + +/* + * Convert an array of little-endian words to a string + */ +function binl2str(bin) +{ + var str = ""; + var mask = (1 << chrsz) - 1; + for(var i = 0; i < bin.length * 32; i += chrsz) + str += String.fromCharCode((bin[i>>5] >>> (i % 32)) & mask); + return str; +} + +/* + * Convert an array of little-endian words to a hex string. + */ +function binl2hex(binarray) +{ + var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; + var str = ""; + for(var i = 0; i < binarray.length * 4; i++) + { + str += hex_tab.charAt((binarray[i>>2] >> ((i%4)*8+4)) & 0xF) + + hex_tab.charAt((binarray[i>>2] >> ((i%4)*8 )) & 0xF); + } + return str; +} + +/* + * Convert an array of little-endian words to a base-64 string + */ +function binl2b64(binarray) +{ + var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; + var str = ""; + for(var i = 0; i < binarray.length * 4; i += 3) + { + var triplet = (((binarray[i >> 2] >> 8 * ( i %4)) & 0xFF) << 16) + | (((binarray[i+1 >> 2] >> 8 * ((i+1)%4)) & 0xFF) << 8 ) + | ((binarray[i+2 >> 2] >> 8 * ((i+2)%4)) & 0xFF); + for(var j = 0; j < 4; j++) + { + if(i * 8 + j * 6 > binarray.length * 32) str += b64pad; + else str += tab.charAt((triplet >> 6*(3-j)) & 0x3F); + } + } + return str; +} + + +//############################################################################# +//############################################################################# +//############################################################################# + + + +MochiKit.Base.update(Clipperz.Crypto.Base, { + + '__repr__': function () { + return "[" + this.NAME + " " + this.VERSION + "]"; + }, + + 'toString': function () { + return this.__repr__(); + }, + + //----------------------------------------------------------------------------- + + 'encryptUsingSecretKey': function (aKey, aMessage) { +//Clipperz.Profile.start("Clipperz.Crypto.Base.encryptUsingSecretKey"); + var result; + var plaintext; + var header; + var key; + + key = hexToByteArray(Clipperz.Crypto.Base.computeHashValue(aKey)); + + addEntropyTime(); + prng = new AESprng(keyFromEntropy()); + + plaintext = encode_utf8(aMessage); + + header = Clipperz.Base.byteArrayToString(hexToByteArray(Clipperz.Crypto.Base.computeMD5HashValue(plaintext))); + + // Add message length in bytes to header + i = plaintext.length; + header += String.fromCharCode(i >>> 24); + header += String.fromCharCode(i >>> 16); + header += String.fromCharCode(i >>> 8); + header += String.fromCharCode(i & 0xFF); + + // The format of the actual message passed to rijndaelEncrypt + // is: + // + // Bytes Content + // 0-15 MD5 signature of plaintext + // 16-19 Length of plaintext, big-endian order + // 20-end Plaintext + // + // Note that this message will be padded with zero bytes + // to an integral number of AES blocks (blockSizeInBits / 8). + // This does not include the initial vector for CBC + // encryption, which is added internally by rijndaelEncrypt. + result = byteArrayToHex(rijndaelEncrypt(header + plaintext, key, "CBC")); + + delete prng; + +//Clipperz.Profile.stop("Clipperz.Crypto.Base.encryptUsingSecretKey"); + return result; + }, + + //............................................................................. + + 'decryptUsingSecretKey': function (aKey, aMessage) { +//Clipperz.Profile.start("Clipperz.Crypto.Base.decryptUsingSecretKey"); + var key; + var decryptedText; + var textLength; + var header; + var headerDigest; + var plaintext; + var i; + + key = hexToByteArray(Clipperz.Crypto.Base.computeHashValue(aKey)); + + decryptedText = rijndaelDecrypt(hexToByteArray(aMessage), key, "CBC"); + + header = decryptedText.slice(0, 20); + decryptedText = decryptedText.slice(20); + + headerDigest = byteArrayToHex(header.slice(0,16)); + textLength = (header[16] << 24) | (header[17] << 16) | (header[18] << 8) | header[19]; + + if ((textLength < 0) || (textLength > decryptedText.length)) { +// jslog.warning("Message (length " + decryptedText.length + ") truncated. " + textLength + " characters expected."); + // Try to sauve qui peut by setting length to entire message + textLength = decryptedText.length; + } + + plainText = ""; + + for (i=0; i