summaryrefslogtreecommitdiff
path: root/core/multimedia/opieplayer/libmad/synth.c
Unidiff
Diffstat (limited to 'core/multimedia/opieplayer/libmad/synth.c') (more/less context) (show whitespace changes)
-rw-r--r--core/multimedia/opieplayer/libmad/synth.c855
1 files changed, 855 insertions, 0 deletions
diff --git a/core/multimedia/opieplayer/libmad/synth.c b/core/multimedia/opieplayer/libmad/synth.c
new file mode 100644
index 0000000..e1914c9
--- a/dev/null
+++ b/core/multimedia/opieplayer/libmad/synth.c
@@ -0,0 +1,855 @@
1/*
2 * mad - MPEG audio decoder
3 * Copyright (C) 2000-2001 Robert Leslie
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * $Id$
20 */
21
22# ifdef HAVE_CONFIG_H
23# include "libmad_config.h"
24# endif
25
26# include "libmad_global.h"
27
28# include "fixed.h"
29# include "frame.h"
30# include "synth.h"
31
32/*
33 * NAME:synth->init()
34 * DESCRIPTION:initialize synth struct
35 */
36void mad_synth_init(struct mad_synth *synth)
37{
38 mad_synth_mute(synth);
39
40 synth->phase = 0;
41
42 synth->pcm.samplerate = 0;
43 synth->pcm.channels = 0;
44 synth->pcm.length = 0;
45}
46
47/*
48 * NAME:synth->mute()
49 * DESCRIPTION:zero all polyphase filterbank values, resetting synthesis
50 */
51void mad_synth_mute(struct mad_synth *synth)
52{
53 unsigned int ch, s, v;
54
55 for (ch = 0; ch < 2; ++ch) {
56 for (s = 0; s < 16; ++s) {
57 for (v = 0; v < 8; ++v) {
58 synth->filter[ch][0][0][s][v] = synth->filter[ch][0][1][s][v] =
59 synth->filter[ch][1][0][s][v] = synth->filter[ch][1][1][s][v] = 0;
60 }
61 }
62 }
63}
64
65/*
66 * An optional optimization called here the Subband Synthesis Optimization
67 * (SSO) improves the performance of subband synthesis at the expense of
68 * accuracy.
69 *
70 * The idea is to simplify 32x32->64-bit multiplication to 32x32->32 such
71 * that extra scaling and rounding are not necessary. This often allows the
72 * compiler to use faster 32-bit multiply-accumulate instructions instead of
73 * explicit 64-bit multiply, shift, and add instructions.
74 *
75 * SSO works like this: a full 32x32->64-bit multiply of two mad_fixed_t
76 * values requires the result to be right-shifted 28 bits to be properly
77 * scaled to the same fixed-point format. Right shifts can be applied at any
78 * time to either operand or to the result, so the optimization involves
79 * careful placement of these shifts to minimize the loss of accuracy.
80 *
81 * First, a 14-bit shift is applied with rounding at compile-time to the D[]
82 * table of coefficients for the subband synthesis window. This only loses 2
83 * bits of accuracy because the lower 12 bits are always zero. A second
84 * 12-bit shift occurs after the DCT calculation. This loses 12 bits of
85 * accuracy. Finally, a third 2-bit shift occurs just before the sample is
86 * saved in the PCM buffer. 14 + 12 + 2 == 28 bits.
87 */
88
89/* FPM_DEFAULT without OPT_SSO will actually lose accuracy and performance */
90
91# if defined(FPM_DEFAULT) && !defined(OPT_SSO)
92# define OPT_SSO
93# endif
94
95/* second SSO shift, with rounding */
96
97# if defined(OPT_SSO)
98# define SHIFT(x) (((x) + (1L << 11)) >> 12)
99# else
100# define SHIFT(x) (x)
101# endif
102
103/* possible DCT speed optimization */
104
105# if defined(OPT_SPEED) && defined(MAD_F_MLX)
106# define OPT_DCTO
107# define MUL(x, y) \
108 ({ mad_fixed64hi_t hi; \
109 mad_fixed64lo_t lo; \
110 MAD_F_MLX(hi, lo, (x), (y)); \
111 hi << (32 - MAD_F_SCALEBITS - 3); \
112 })
113# else
114# undef OPT_DCTO
115# define MUL(x, y) mad_f_mul((x), (y))
116# endif
117
118/*
119 * NAME:dct32()
120 * DESCRIPTION:perform fast in[32]->out[32] DCT
121 */
122static
123void dct32(mad_fixed_t const in[32], unsigned int slot,
124 mad_fixed_t lo[16][8], mad_fixed_t hi[16][8])
125{
126 mad_fixed_t t0, t1, t2, t3, t4, t5, t6, t7;
127 mad_fixed_t t8, t9, t10, t11, t12, t13, t14, t15;
128 mad_fixed_t t16, t17, t18, t19, t20, t21, t22, t23;
129 mad_fixed_t t24, t25, t26, t27, t28, t29, t30, t31;
130 mad_fixed_t t32, t33, t34, t35, t36, t37, t38, t39;
131 mad_fixed_t t40, t41, t42, t43, t44, t45, t46, t47;
132 mad_fixed_t t48, t49, t50, t51, t52, t53, t54, t55;
133 mad_fixed_t t56, t57, t58, t59, t60, t61, t62, t63;
134 mad_fixed_t t64, t65, t66, t67, t68, t69, t70, t71;
135 mad_fixed_t t72, t73, t74, t75, t76, t77, t78, t79;
136 mad_fixed_t t80, t81, t82, t83, t84, t85, t86, t87;
137 mad_fixed_t t88, t89, t90, t91, t92, t93, t94, t95;
138 mad_fixed_t t96, t97, t98, t99, t100, t101, t102, t103;
139 mad_fixed_t t104, t105, t106, t107, t108, t109, t110, t111;
140 mad_fixed_t t112, t113, t114, t115, t116, t117, t118, t119;
141 mad_fixed_t t120, t121, t122, t123, t124, t125, t126, t127;
142 mad_fixed_t t128, t129, t130, t131, t132, t133, t134, t135;
143 mad_fixed_t t136, t137, t138, t139, t140, t141, t142, t143;
144 mad_fixed_t t144, t145, t146, t147, t148, t149, t150, t151;
145 mad_fixed_t t152, t153, t154, t155, t156, t157, t158, t159;
146 mad_fixed_t t160, t161, t162, t163, t164, t165, t166, t167;
147 mad_fixed_t t168, t169, t170, t171, t172, t173, t174, t175;
148 mad_fixed_t t176;
149
150 /* costab[i] = cos(PI / (2 * 32) * i) */
151
152# if defined(OPT_DCTO)
153 enum {
154 costab1 = MAD_F(0x7fd8878e),
155 costab2 = MAD_F(0x7f62368f),
156 costab3 = MAD_F(0x7e9d55fc),
157 costab4 = MAD_F(0x7d8a5f40),
158 costab5 = MAD_F(0x7c29fbee),
159 costab6 = MAD_F(0x7a7d055b),
160 costab7 = MAD_F(0x78848414),
161 costab8 = MAD_F(0x7641af3d),
162 costab9 = MAD_F(0x73b5ebd1),
163 costab10 = MAD_F(0x70e2cbc6),
164 costab11 = MAD_F(0x6dca0d14),
165 costab12 = MAD_F(0x6a6d98a4),
166 costab13 = MAD_F(0x66cf8120),
167 costab14 = MAD_F(0x62f201ac),
168 costab15 = MAD_F(0x5ed77c8a),
169 costab16 = MAD_F(0x5a82799a),
170 costab17 = MAD_F(0x55f5a4d2),
171 costab18 = MAD_F(0x5133cc94),
172 costab19 = MAD_F(0x4c3fdff4),
173 costab20 = MAD_F(0x471cece7),
174 costab21 = MAD_F(0x41ce1e65),
175 costab22 = MAD_F(0x3c56ba70),
176 costab23 = MAD_F(0x36ba2014),
177 costab24 = MAD_F(0x30fbc54d),
178 costab25 = MAD_F(0x2b1f34eb),
179 costab26 = MAD_F(0x25280c5e),
180 costab27 = MAD_F(0x1f19f97b),
181 costab28 = MAD_F(0x18f8b83c),
182 costab29 = MAD_F(0x12c8106f),
183 costab30 = MAD_F(0x0c8bd35e),
184 costab31 = MAD_F(0x0647d97c)
185 };
186# else
187 enum {
188 costab1 = MAD_F(0x0ffb10f2), /* 0.998795456 */
189 costab2 = MAD_F(0x0fec46d2), /* 0.995184727 */
190 costab3 = MAD_F(0x0fd3aac0), /* 0.989176510 */
191 costab4 = MAD_F(0x0fb14be8), /* 0.980785280 */
192 costab5 = MAD_F(0x0f853f7e), /* 0.970031253 */
193 costab6 = MAD_F(0x0f4fa0ab), /* 0.956940336 */
194 costab7 = MAD_F(0x0f109082), /* 0.941544065 */
195 costab8 = MAD_F(0x0ec835e8), /* 0.923879533 */
196 costab9 = MAD_F(0x0e76bd7a), /* 0.903989293 */
197 costab10 = MAD_F(0x0e1c5979), /* 0.881921264 */
198 costab11 = MAD_F(0x0db941a3), /* 0.857728610 */
199 costab12 = MAD_F(0x0d4db315), /* 0.831469612 */
200 costab13 = MAD_F(0x0cd9f024), /* 0.803207531 */
201 costab14 = MAD_F(0x0c5e4036), /* 0.773010453 */
202 costab15 = MAD_F(0x0bdaef91), /* 0.740951125 */
203 costab16 = MAD_F(0x0b504f33), /* 0.707106781 */
204 costab17 = MAD_F(0x0abeb49a), /* 0.671558955 */
205 costab18 = MAD_F(0x0a267993), /* 0.634393284 */
206 costab19 = MAD_F(0x0987fbfe), /* 0.595699304 */
207 costab20 = MAD_F(0x08e39d9d), /* 0.555570233 */
208 costab21 = MAD_F(0x0839c3cd), /* 0.514102744 */
209 costab22 = MAD_F(0x078ad74e), /* 0.471396737 */
210 costab23 = MAD_F(0x06d74402), /* 0.427555093 */
211 costab24 = MAD_F(0x061f78aa), /* 0.382683432 */
212 costab25 = MAD_F(0x0563e69d), /* 0.336889853 */
213 costab26 = MAD_F(0x04a5018c), /* 0.290284677 */
214 costab27 = MAD_F(0x03e33f2f), /* 0.242980180 */
215 costab28 = MAD_F(0x031f1708), /* 0.195090322 */
216 costab29 = MAD_F(0x0259020e), /* 0.146730474 */
217 costab30 = MAD_F(0x01917a6c), /* 0.098017140 */
218 costab31 = MAD_F(0x00c8fb30) /* 0.049067674 */
219 };
220# endif
221
222 t0 = in[0] + in[31]; t16 = MUL(in[0] - in[31], costab1);
223 t1 = in[15] + in[16]; t17 = MUL(in[15] - in[16], costab31);
224
225 t41 = t16 + t17;
226 t59 = MUL(t16 - t17, costab2);
227 t33 = t0 + t1;
228 t50 = MUL(t0 - t1, costab2);
229
230 t2 = in[7] + in[24]; t18 = MUL(in[7] - in[24], costab15);
231 t3 = in[8] + in[23]; t19 = MUL(in[8] - in[23], costab17);
232
233 t42 = t18 + t19;
234 t60 = MUL(t18 - t19, costab30);
235 t34 = t2 + t3;
236 t51 = MUL(t2 - t3, costab30);
237
238 t4 = in[3] + in[28]; t20 = MUL(in[3] - in[28], costab7);
239 t5 = in[12] + in[19]; t21 = MUL(in[12] - in[19], costab25);
240
241 t43 = t20 + t21;
242 t61 = MUL(t20 - t21, costab14);
243 t35 = t4 + t5;
244 t52 = MUL(t4 - t5, costab14);
245
246 t6 = in[4] + in[27]; t22 = MUL(in[4] - in[27], costab9);
247 t7 = in[11] + in[20]; t23 = MUL(in[11] - in[20], costab23);
248
249 t44 = t22 + t23;
250 t62 = MUL(t22 - t23, costab18);
251 t36 = t6 + t7;
252 t53 = MUL(t6 - t7, costab18);
253
254 t8 = in[1] + in[30]; t24 = MUL(in[1] - in[30], costab3);
255 t9 = in[14] + in[17]; t25 = MUL(in[14] - in[17], costab29);
256
257 t45 = t24 + t25;
258 t63 = MUL(t24 - t25, costab6);
259 t37 = t8 + t9;
260 t54 = MUL(t8 - t9, costab6);
261
262 t10 = in[6] + in[25]; t26 = MUL(in[6] - in[25], costab13);
263 t11 = in[9] + in[22]; t27 = MUL(in[9] - in[22], costab19);
264
265 t46 = t26 + t27;
266 t64 = MUL(t26 - t27, costab26);
267 t38 = t10 + t11;
268 t55 = MUL(t10 - t11, costab26);
269
270 t12 = in[2] + in[29]; t28 = MUL(in[2] - in[29], costab5);
271 t13 = in[13] + in[18]; t29 = MUL(in[13] - in[18], costab27);
272
273 t47 = t28 + t29;
274 t65 = MUL(t28 - t29, costab10);
275 t39 = t12 + t13;
276 t56 = MUL(t12 - t13, costab10);
277
278 t14 = in[5] + in[26]; t30 = MUL(in[5] - in[26], costab11);
279 t15 = in[10] + in[21]; t31 = MUL(in[10] - in[21], costab21);
280
281 t48 = t30 + t31;
282 t66 = MUL(t30 - t31, costab22);
283 t40 = t14 + t15;
284 t57 = MUL(t14 - t15, costab22);
285
286 t69 = t33 + t34; t89 = MUL(t33 - t34, costab4);
287 t70 = t35 + t36; t90 = MUL(t35 - t36, costab28);
288 t71 = t37 + t38; t91 = MUL(t37 - t38, costab12);
289 t72 = t39 + t40; t92 = MUL(t39 - t40, costab20);
290 t73 = t41 + t42; t94 = MUL(t41 - t42, costab4);
291 t74 = t43 + t44; t95 = MUL(t43 - t44, costab28);
292 t75 = t45 + t46; t96 = MUL(t45 - t46, costab12);
293 t76 = t47 + t48; t97 = MUL(t47 - t48, costab20);
294
295 t78 = t50 + t51; t100 = MUL(t50 - t51, costab4);
296 t79 = t52 + t53; t101 = MUL(t52 - t53, costab28);
297 t80 = t54 + t55; t102 = MUL(t54 - t55, costab12);
298 t81 = t56 + t57; t103 = MUL(t56 - t57, costab20);
299
300 t83 = t59 + t60; t106 = MUL(t59 - t60, costab4);
301 t84 = t61 + t62; t107 = MUL(t61 - t62, costab28);
302 t85 = t63 + t64; t108 = MUL(t63 - t64, costab12);
303 t86 = t65 + t66; t109 = MUL(t65 - t66, costab20);
304
305 t113 = t69 + t70;
306 t114 = t71 + t72;
307
308 /* 0 */ hi[15][slot] = SHIFT(t113 + t114);
309 /* 16 */ lo[ 0][slot] = SHIFT(MUL(t113 - t114, costab16));
310
311 t115 = t73 + t74;
312 t116 = t75 + t76;
313
314 t32 = t115 + t116;
315
316 /* 1 */ hi[14][slot] = SHIFT(t32);
317
318 t118 = t78 + t79;
319 t119 = t80 + t81;
320
321 t58 = t118 + t119;
322
323 /* 2 */ hi[13][slot] = SHIFT(t58);
324
325 t121 = t83 + t84;
326 t122 = t85 + t86;
327
328 t67 = t121 + t122;
329
330 t49 = (t67 << 1) - t32;
331
332 /* 3 */ hi[12][slot] = SHIFT(t49);
333
334 t125 = t89 + t90;
335 t126 = t91 + t92;
336
337 t93 = t125 + t126;
338
339 /* 4 */ hi[11][slot] = SHIFT(t93);
340
341 t128 = t94 + t95;
342 t129 = t96 + t97;
343
344 t98 = t128 + t129;
345
346 t68 = (t98 << 1) - t49;
347
348 /* 5 */ hi[10][slot] = SHIFT(t68);
349
350 t132 = t100 + t101;
351 t133 = t102 + t103;
352
353 t104 = t132 + t133;
354
355 t82 = (t104 << 1) - t58;
356
357 /* 6 */ hi[ 9][slot] = SHIFT(t82);
358
359 t136 = t106 + t107;
360 t137 = t108 + t109;
361
362 t110 = t136 + t137;
363
364 t87 = (t110 << 1) - t67;
365
366 t77 = (t87 << 1) - t68;
367
368 /* 7 */ hi[ 8][slot] = SHIFT(t77);
369
370 t141 = MUL(t69 - t70, costab8);
371 t142 = MUL(t71 - t72, costab24);
372 t143 = t141 + t142;
373
374 /* 8 */ hi[ 7][slot] = SHIFT(t143);
375 /* 24 */ lo[ 8][slot] =
376 SHIFT((MUL(t141 - t142, costab16) << 1) - t143);
377
378 t144 = MUL(t73 - t74, costab8);
379 t145 = MUL(t75 - t76, costab24);
380 t146 = t144 + t145;
381
382 t88 = (t146 << 1) - t77;
383
384 /* 9 */ hi[ 6][slot] = SHIFT(t88);
385
386 t148 = MUL(t78 - t79, costab8);
387 t149 = MUL(t80 - t81, costab24);
388 t150 = t148 + t149;
389
390 t105 = (t150 << 1) - t82;
391
392 /* 10 */ hi[ 5][slot] = SHIFT(t105);
393
394 t152 = MUL(t83 - t84, costab8);
395 t153 = MUL(t85 - t86, costab24);
396 t154 = t152 + t153;
397
398 t111 = (t154 << 1) - t87;
399
400 t99 = (t111 << 1) - t88;
401
402 /* 11 */ hi[ 4][slot] = SHIFT(t99);
403
404 t157 = MUL(t89 - t90, costab8);
405 t158 = MUL(t91 - t92, costab24);
406 t159 = t157 + t158;
407
408 t127 = (t159 << 1) - t93;
409
410 /* 12 */ hi[ 3][slot] = SHIFT(t127);
411
412 t160 = (MUL(t125 - t126, costab16) << 1) - t127;
413
414 /* 20 */ lo[ 4][slot] = SHIFT(t160);
415 /* 28 */ lo[12][slot] =
416 SHIFT((((MUL(t157 - t158, costab16) << 1) - t159) << 1) - t160);
417
418 t161 = MUL(t94 - t95, costab8);
419 t162 = MUL(t96 - t97, costab24);
420 t163 = t161 + t162;
421
422 t130 = (t163 << 1) - t98;
423
424 t112 = (t130 << 1) - t99;
425
426 /* 13 */ hi[ 2][slot] = SHIFT(t112);
427
428 t164 = (MUL(t128 - t129, costab16) << 1) - t130;
429
430 t166 = MUL(t100 - t101, costab8);
431 t167 = MUL(t102 - t103, costab24);
432 t168 = t166 + t167;
433
434 t134 = (t168 << 1) - t104;
435
436 t120 = (t134 << 1) - t105;
437
438 /* 14 */ hi[ 1][slot] = SHIFT(t120);
439
440 t135 = (MUL(t118 - t119, costab16) << 1) - t120;
441
442 /* 18 */ lo[ 2][slot] = SHIFT(t135);
443
444 t169 = (MUL(t132 - t133, costab16) << 1) - t134;
445
446 t151 = (t169 << 1) - t135;
447
448 /* 22 */ lo[ 6][slot] = SHIFT(t151);
449
450 t170 = (((MUL(t148 - t149, costab16) << 1) - t150) << 1) - t151;
451
452 /* 26 */ lo[10][slot] = SHIFT(t170);
453 /* 30 */ lo[14][slot] =
454 SHIFT((((((MUL(t166 - t167, costab16) << 1) -
455 t168) << 1) - t169) << 1) - t170);
456
457 t171 = MUL(t106 - t107, costab8);
458 t172 = MUL(t108 - t109, costab24);
459 t173 = t171 + t172;
460
461 t138 = (t173 << 1) - t110;
462
463 t123 = (t138 << 1) - t111;
464
465 t139 = (MUL(t121 - t122, costab16) << 1) - t123;
466
467 t117 = (t123 << 1) - t112;
468
469 /* 15 */ hi[ 0][slot] = SHIFT(t117);
470
471 t124 = (MUL(t115 - t116, costab16) << 1) - t117;
472
473 /* 17 */ lo[ 1][slot] = SHIFT(t124);
474
475 t131 = (t139 << 1) - t124;
476
477 /* 19 */ lo[ 3][slot] = SHIFT(t131);
478
479 t140 = (t164 << 1) - t131;
480
481 /* 21 */ lo[ 5][slot] = SHIFT(t140);
482
483 t174 = (MUL(t136 - t137, costab16) << 1) - t138;
484
485 t155 = (t174 << 1) - t139;
486
487 t147 = (t155 << 1) - t140;
488
489 /* 23 */ lo[ 7][slot] = SHIFT(t147);
490
491 t156 = (((MUL(t144 - t145, costab16) << 1) - t146) << 1) - t147;
492
493 /* 25 */ lo[ 9][slot] = SHIFT(t156);
494
495 t175 = (((MUL(t152 - t153, costab16) << 1) - t154) << 1) - t155;
496
497 t165 = (t175 << 1) - t156;
498
499 /* 27 */ lo[11][slot] = SHIFT(t165);
500
501 t176 = (((((MUL(t161 - t162, costab16) << 1) -
502 t163) << 1) - t164) << 1) - t165;
503
504 /* 29 */ lo[13][slot] = SHIFT(t176);
505 /* 31 */ lo[15][slot] =
506 SHIFT((((((((MUL(t171 - t172, costab16) << 1) -
507 t173) << 1) - t174) << 1) - t175) << 1) - t176);
508
509 /*
510 * Totals:
511 * 80 multiplies
512 * 80 additions
513 * 119 subtractions
514 * 49 shifts (not counting SSO)
515 */
516}
517
518# undef MUL
519# undef SHIFT
520
521/* third SSO shift and/or D[] optimization preshift */
522
523# if defined(OPT_SSO)
524# if MAD_F_FRACBITS != 28
525# error "MAD_F_FRACBITS must be 28 to use OPT_SSO"
526# endif
527 # define ML0(hi, lo, x, y)((lo) = (x) * (y))
528 # define MLA(hi, lo, x, y)((lo) += (x) * (y))
529 # define MLZ(hi, lo) ((void) (hi), (mad_fixed_t) (lo))
530 # define SHIFT(x) ((x) >> 2)
531 # define PRESHIFT(x) ((MAD_F(x) + (1L << 13)) >> 14)
532# else
533 # define ML0(hi, lo, x, y)MAD_F_ML0((hi), (lo), (x), (y))
534 # define MLA(hi, lo, x, y)MAD_F_MLA((hi), (lo), (x), (y))
535 # define MLZ(hi, lo) MAD_F_MLZ((hi), (lo))
536 # define SHIFT(x) (x)
537# if defined(MAD_F_SCALEBITS)
538# undef MAD_F_SCALEBITS
539 # define MAD_F_SCALEBITS(MAD_F_FRACBITS - 12)
540 # define PRESHIFT(x) (MAD_F(x) >> 12)
541# else
542 # define PRESHIFT(x) MAD_F(x)
543# endif
544# endif
545
546static
547mad_fixed_t const D[17][32] = {
548# include "D.dat"
549};
550
551# if defined(ASO_SYNTH)
552void synth_full(struct mad_synth *, struct mad_frame const *,
553 unsigned int, unsigned int);
554# else
555/*
556 * NAME:synth->full()
557 * DESCRIPTION:perform full frequency PCM synthesis
558 */
559static
560void synth_full(struct mad_synth *synth, struct mad_frame const *frame,
561 unsigned int nch, unsigned int ns)
562{
563 unsigned int phase, ch, s, sb, pe, po;
564 mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
565 mad_fixed_t const (*sbsample)[36][32];
566 register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8];
567 register mad_fixed_t const (*Dptr)[32], *ptr;
568 register mad_fixed64hi_t hi;
569 register mad_fixed64lo_t lo;
570
571 for (ch = 0; ch < nch; ++ch) {
572 sbsample = &frame->sbsample[ch];
573 filter = &synth->filter[ch];
574 phase = synth->phase;
575 pcm1 = synth->pcm.samples[ch];
576
577 for (s = 0; s < ns; ++s) {
578 dct32((*sbsample)[s], phase >> 1,
579 (*filter)[0][phase & 1], (*filter)[1][phase & 1]);
580
581 pe = phase & ~1;
582 po = ((phase - 1) & 0xf) | 1;
583
584 /* calculate 32 samples */
585
586 fe = &(*filter)[0][ phase & 1][0];
587 fx = &(*filter)[0][~phase & 1][0];
588 fo = &(*filter)[1][~phase & 1][0];
589
590 Dptr = &D[0];
591
592 ptr = *Dptr + pe;
593 ML0(hi, lo, (*fe)[0], ptr[ 0]);
594 MLA(hi, lo, (*fe)[1], ptr[14]);
595 MLA(hi, lo, (*fe)[2], ptr[12]);
596 MLA(hi, lo, (*fe)[3], ptr[10]);
597 MLA(hi, lo, (*fe)[4], ptr[ 8]);
598 MLA(hi, lo, (*fe)[5], ptr[ 6]);
599 MLA(hi, lo, (*fe)[6], ptr[ 4]);
600 MLA(hi, lo, (*fe)[7], ptr[ 2]);
601
602 ptr = *Dptr + po;
603 MLA(hi, lo, (*fx)[0], -ptr[ 0]);
604 MLA(hi, lo, (*fx)[1], -ptr[14]);
605 MLA(hi, lo, (*fx)[2], -ptr[12]);
606 MLA(hi, lo, (*fx)[3], -ptr[10]);
607 MLA(hi, lo, (*fx)[4], -ptr[ 8]);
608 MLA(hi, lo, (*fx)[5], -ptr[ 6]);
609 MLA(hi, lo, (*fx)[6], -ptr[ 4]);
610 MLA(hi, lo, (*fx)[7], -ptr[ 2]);
611
612 *pcm1++ = SHIFT(MLZ(hi, lo));
613
614 pcm2 = pcm1 + 30;
615
616 for (sb = 1; sb < 16; ++sb) {
617 ++fe;
618 ++Dptr;
619
620 /* D[32 - sb][i] == -D[sb][31 - i] */
621
622 ptr = *Dptr + pe;
623 ML0(hi, lo, (*fe)[7], ptr[ 2]);
624 MLA(hi, lo, (*fe)[6], ptr[ 4]);
625 MLA(hi, lo, (*fe)[5], ptr[ 6]);
626 MLA(hi, lo, (*fe)[4], ptr[ 8]);
627 MLA(hi, lo, (*fe)[3], ptr[10]);
628 MLA(hi, lo, (*fe)[2], ptr[12]);
629 MLA(hi, lo, (*fe)[1], ptr[14]);
630 MLA(hi, lo, (*fe)[0], ptr[ 0]);
631
632 ptr = *Dptr + po;
633 MLA(hi, lo, (*fo)[0], -ptr[ 0]);
634 MLA(hi, lo, (*fo)[1], -ptr[14]);
635 MLA(hi, lo, (*fo)[2], -ptr[12]);
636 MLA(hi, lo, (*fo)[3], -ptr[10]);
637 MLA(hi, lo, (*fo)[4], -ptr[ 8]);
638 MLA(hi, lo, (*fo)[5], -ptr[ 6]);
639 MLA(hi, lo, (*fo)[6], -ptr[ 4]);
640 MLA(hi, lo, (*fo)[7], -ptr[ 2]);
641
642 *pcm1++ = SHIFT(MLZ(hi, lo));
643
644 ptr = *Dptr - po;
645 ML0(hi, lo, (*fo)[7], ptr[31 - 2]);
646 MLA(hi, lo, (*fo)[6], ptr[31 - 4]);
647 MLA(hi, lo, (*fo)[5], ptr[31 - 6]);
648 MLA(hi, lo, (*fo)[4], ptr[31 - 8]);
649 MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
650 MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
651 MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
652 MLA(hi, lo, (*fo)[0], ptr[31 - 16]);
653
654 ptr = *Dptr - pe;
655 MLA(hi, lo, (*fe)[0], ptr[31 - 16]);
656 MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
657 MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
658 MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
659 MLA(hi, lo, (*fe)[4], ptr[31 - 8]);
660 MLA(hi, lo, (*fe)[5], ptr[31 - 6]);
661 MLA(hi, lo, (*fe)[6], ptr[31 - 4]);
662 MLA(hi, lo, (*fe)[7], ptr[31 - 2]);
663
664 *pcm2-- = SHIFT(MLZ(hi, lo));
665
666 ++fo;
667 }
668
669 ++Dptr;
670
671 ptr = *Dptr + po;
672 ML0(hi, lo, (*fo)[0], ptr[ 0]);
673 MLA(hi, lo, (*fo)[1], ptr[14]);
674 MLA(hi, lo, (*fo)[2], ptr[12]);
675 MLA(hi, lo, (*fo)[3], ptr[10]);
676 MLA(hi, lo, (*fo)[4], ptr[ 8]);
677 MLA(hi, lo, (*fo)[5], ptr[ 6]);
678 MLA(hi, lo, (*fo)[6], ptr[ 4]);
679 MLA(hi, lo, (*fo)[7], ptr[ 2]);
680
681 *pcm1 = SHIFT(-MLZ(hi, lo));
682 pcm1 += 16;
683
684 phase = (phase + 1) % 16;
685 }
686 }
687}
688# endif
689
690/*
691 * NAME:synth->half()
692 * DESCRIPTION:perform half frequency PCM synthesis
693 */
694static
695void synth_half(struct mad_synth *synth, struct mad_frame const *frame,
696 unsigned int nch, unsigned int ns)
697{
698 unsigned int phase, ch, s, sb, pe, po;
699 mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
700 mad_fixed_t const (*sbsample)[36][32];
701 register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8];
702 register mad_fixed_t const (*Dptr)[32], *ptr;
703 register mad_fixed64hi_t hi;
704 register mad_fixed64lo_t lo;
705
706 for (ch = 0; ch < nch; ++ch) {
707 sbsample = &frame->sbsample[ch];
708 filter = &synth->filter[ch];
709 phase = synth->phase;
710 pcm1 = synth->pcm.samples[ch];
711
712 for (s = 0; s < ns; ++s) {
713 dct32((*sbsample)[s], phase >> 1,
714 (*filter)[0][phase & 1], (*filter)[1][phase & 1]);
715
716 pe = phase & ~1;
717 po = ((phase - 1) & 0xf) | 1;
718
719 /* calculate 16 samples */
720
721 fe = &(*filter)[0][ phase & 1][0];
722 fx = &(*filter)[0][~phase & 1][0];
723 fo = &(*filter)[1][~phase & 1][0];
724
725 Dptr = &D[0];
726
727 ptr = *Dptr + pe;
728 ML0(hi, lo, (*fe)[0], ptr[ 0]);
729 MLA(hi, lo, (*fe)[1], ptr[14]);
730 MLA(hi, lo, (*fe)[2], ptr[12]);
731 MLA(hi, lo, (*fe)[3], ptr[10]);
732 MLA(hi, lo, (*fe)[4], ptr[ 8]);
733 MLA(hi, lo, (*fe)[5], ptr[ 6]);
734 MLA(hi, lo, (*fe)[6], ptr[ 4]);
735 MLA(hi, lo, (*fe)[7], ptr[ 2]);
736
737 ptr = *Dptr + po;
738 MLA(hi, lo, (*fx)[0], -ptr[ 0]);
739 MLA(hi, lo, (*fx)[1], -ptr[14]);
740 MLA(hi, lo, (*fx)[2], -ptr[12]);
741 MLA(hi, lo, (*fx)[3], -ptr[10]);
742 MLA(hi, lo, (*fx)[4], -ptr[ 8]);
743 MLA(hi, lo, (*fx)[5], -ptr[ 6]);
744 MLA(hi, lo, (*fx)[6], -ptr[ 4]);
745 MLA(hi, lo, (*fx)[7], -ptr[ 2]);
746
747 *pcm1++ = SHIFT(MLZ(hi, lo));
748
749 pcm2 = pcm1 + 14;
750
751 for (sb = 1; sb < 16; ++sb) {
752 ++fe;
753 ++Dptr;
754
755 /* D[32 - sb][i] == -D[sb][31 - i] */
756
757 if (!(sb & 1)) {
758 ptr = *Dptr + pe;
759 ML0(hi, lo, (*fe)[7], ptr[ 2]);
760 MLA(hi, lo, (*fe)[6], ptr[ 4]);
761 MLA(hi, lo, (*fe)[5], ptr[ 6]);
762 MLA(hi, lo, (*fe)[4], ptr[ 8]);
763 MLA(hi, lo, (*fe)[3], ptr[10]);
764 MLA(hi, lo, (*fe)[2], ptr[12]);
765 MLA(hi, lo, (*fe)[1], ptr[14]);
766 MLA(hi, lo, (*fe)[0], ptr[ 0]);
767
768 ptr = *Dptr + po;
769 MLA(hi, lo, (*fo)[0], -ptr[ 0]);
770 MLA(hi, lo, (*fo)[1], -ptr[14]);
771 MLA(hi, lo, (*fo)[2], -ptr[12]);
772 MLA(hi, lo, (*fo)[3], -ptr[10]);
773 MLA(hi, lo, (*fo)[4], -ptr[ 8]);
774 MLA(hi, lo, (*fo)[5], -ptr[ 6]);
775 MLA(hi, lo, (*fo)[6], -ptr[ 4]);
776 MLA(hi, lo, (*fo)[7], -ptr[ 2]);
777
778 *pcm1++ = SHIFT(MLZ(hi, lo));
779
780 ptr = *Dptr - po;
781 ML0(hi, lo, (*fo)[7], ptr[31 - 2]);
782 MLA(hi, lo, (*fo)[6], ptr[31 - 4]);
783 MLA(hi, lo, (*fo)[5], ptr[31 - 6]);
784 MLA(hi, lo, (*fo)[4], ptr[31 - 8]);
785 MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
786 MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
787 MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
788 MLA(hi, lo, (*fo)[0], ptr[31 - 16]);
789
790 ptr = *Dptr - pe;
791 MLA(hi, lo, (*fe)[0], ptr[31 - 16]);
792 MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
793 MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
794 MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
795 MLA(hi, lo, (*fe)[4], ptr[31 - 8]);
796 MLA(hi, lo, (*fe)[5], ptr[31 - 6]);
797 MLA(hi, lo, (*fe)[6], ptr[31 - 4]);
798 MLA(hi, lo, (*fe)[7], ptr[31 - 2]);
799
800 *pcm2-- = SHIFT(MLZ(hi, lo));
801 }
802
803 ++fo;
804 }
805
806 ++Dptr;
807
808 ptr = *Dptr + po;
809 ML0(hi, lo, (*fo)[0], ptr[ 0]);
810 MLA(hi, lo, (*fo)[1], ptr[14]);
811 MLA(hi, lo, (*fo)[2], ptr[12]);
812 MLA(hi, lo, (*fo)[3], ptr[10]);
813 MLA(hi, lo, (*fo)[4], ptr[ 8]);
814 MLA(hi, lo, (*fo)[5], ptr[ 6]);
815 MLA(hi, lo, (*fo)[6], ptr[ 4]);
816 MLA(hi, lo, (*fo)[7], ptr[ 2]);
817
818 *pcm1 = SHIFT(-MLZ(hi, lo));
819 pcm1 += 8;
820
821 phase = (phase + 1) % 16;
822 }
823 }
824}
825
826/*
827 * NAME:synth->frame()
828 * DESCRIPTION:perform PCM synthesis of frame subband samples
829 */
830void mad_synth_frame(struct mad_synth *synth, struct mad_frame const *frame)
831{
832 unsigned int nch, ns;
833 void (*synth_frame)(struct mad_synth *, struct mad_frame const *,
834 unsigned int, unsigned int);
835
836 nch = MAD_NCHANNELS(&frame->header);
837 ns = MAD_NSBSAMPLES(&frame->header);
838
839 synth->pcm.samplerate = frame->header.samplerate;
840 synth->pcm.channels = nch;
841 synth->pcm.length = 32 * ns;
842
843 synth_frame = synth_full;
844
845 if (frame->options & MAD_OPTION_HALFSAMPLERATE) {
846 synth->pcm.samplerate /= 2;
847 synth->pcm.length /= 2;
848
849 synth_frame = synth_half;
850 }
851
852 synth_frame(synth, frame, nch, ns);
853
854 synth->phase = (synth->phase + ns) % 16;
855}