//TOAST_SPU will define ALL spu entries - no matter the tranparency //#define TOAST_SPU /* #define PRIV_CLUT */ /* Currently only blend_yuv(..) works */ /* * * Copyright (C) James Courtier-Dutton James@superbug.demon.co.uk - July 2001 * * Copyright (C) 2000 Thomas Mirlacher * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * The author may be reached as * *------------------------------------------------------------ * */ /* #define LOG_BLEND_YUV */ #include #include #include #include #include #include "alphablend.h" #define BLEND_COLOR(dst, src, mask, o) ((((src&mask)*o + ((dst&mask)*(0x0f-o)))/0xf) & mask) #define BLEND_BYTE(dst, src, o) (((src)*o + ((dst)*(0xf-o)))/0xf) static void mem_blend16(uint16_t *mem, uint16_t clr, uint8_t o, int len) { uint16_t *limit = mem + len; while (mem < limit) { *mem = BLEND_COLOR(*mem, clr, 0xf800, o) | BLEND_COLOR(*mem, clr, 0x07e0, o) | BLEND_COLOR(*mem, clr, 0x001f, o); mem++; } } static void mem_blend24(uint8_t *mem, uint8_t r, uint8_t g, uint8_t b, uint8_t o, int len) { uint8_t *limit = mem + len*3; while (mem < limit) { *mem = BLEND_BYTE(*mem, r, o); mem++; *mem = BLEND_BYTE(*mem, g, o); mem++; *mem = BLEND_BYTE(*mem, b, o); mem++; } } static void mem_blend24_32(uint8_t *mem, uint8_t r, uint8_t g, uint8_t b, uint8_t o, int len) { uint8_t *limit = mem + len*4; while (mem < limit) { *mem = BLEND_BYTE(*mem, r, o); mem++; *mem = BLEND_BYTE(*mem, g, o); mem++; *mem = BLEND_BYTE(*mem, b, o); mem += 2; } } static void mem_blend32(uint8_t *mem, uint8_t *src, uint8_t o, int len) { uint8_t *limit = mem + len*4; while (mem < limit) { *mem = BLEND_BYTE(*mem, src[0], o); mem++; *mem = BLEND_BYTE(*mem, src[1], o); mem++; *mem = BLEND_BYTE(*mem, src[2], o); mem++; *mem = BLEND_BYTE(*mem, src[3], o); mem++; } } /* * Some macros for fixed point arithmetic. * * The blend_rgb* routines perform rle image scaling using * scale factors that are expressed as integers scaled with * a factor of 2**16. * * INT_TO_SCALED()/SCALED_TO_INT() converts from integer * to scaled fixed point and back. */ #define SCALE_SHIFT 16 #define SCALE_FACTOR (1<> SCALE_SHIFT) static rle_elem_t * rle_img_advance_line(rle_elem_t *rle, rle_elem_t *rle_limit, int w) { int x; for (x = 0; x < w && rle < rle_limit; ) { x += rle->len; rle++; } return rle; } void blend_rgb16 (uint8_t * img, vo_overlay_t * img_overl, int img_width, int img_height, int dst_width, int dst_height) { uint8_t *trans; clut_t* clut = (clut_t*) img_overl->clip_color; int src_width = img_overl->width; int src_height = img_overl->height; rle_elem_t *rle = img_overl->rle; rle_elem_t *rle_limit = rle + img_overl->num_rle; int x, y, x1_scaled, x2_scaled; int dy, dy_step, x_scale; /* scaled 2**SCALE_SHIFT */ int clip_right; uint16_t *img_pix; dy_step = INT_TO_SCALED(dst_height) / img_height; x_scale = INT_TO_SCALED(img_width) / dst_width; img_pix = (uint16_t *) img + (img_overl->y * img_height / dst_height) * img_width + (img_overl->x * img_width / dst_width); trans = img_overl->clip_trans; /* avoid wraping overlay if drawing to small image */ if( (img_overl->x + img_overl->clip_right) < dst_width ) clip_right = img_overl->clip_right; else clip_right = dst_width - 1 - img_overl->x; /* avoid buffer overflow */ if( (src_height + img_overl->y) >= dst_height ) src_height = dst_height - 1 - img_overl->y; for (y = dy = 0; y < src_height && rle < rle_limit;) { int mask = !(img_overl->clip_top > y || img_overl->clip_bottom < y); rle_elem_t *rle_start = rle; for (x = x1_scaled = 0; x < src_width;) { uint8_t clr; uint16_t o; int rlelen; clr = rle->color; o = trans[clr]; rlelen = rle->len; if (o && mask) { /* threat cases where clipping border is inside rle->len pixels */ if ( img_overl->clip_left > x ) { if( img_overl->clip_left < x + rlelen ) { x1_scaled = SCALED_TO_INT( img_overl->clip_left * x_scale ); rlelen -= img_overl->clip_left - x; x += img_overl->clip_left - x; } else { o = 0; } } else if( clip_right < x + rlelen ) { if( clip_right > x ) { x2_scaled = SCALED_TO_INT( clip_right * x_scale); mem_blend16(img_pix+x1_scaled, *((uint16_t *)&clut[clr]), o, x2_scaled-x1_scaled); o = 0; } else { o = 0; } } } x2_scaled = SCALED_TO_INT((x + rlelen) * x_scale); if (o && mask) { mem_blend16(img_pix+x1_scaled, *((uint16_t *)&clut[clr]), o, x2_scaled-x1_scaled); } x1_scaled = x2_scaled; x += rlelen; rle++; if (rle >= rle_limit) break; } img_pix += img_width; dy += dy_step; if (dy >= INT_TO_SCALED(1)) { dy -= INT_TO_SCALED(1); ++y; while (dy >= INT_TO_SCALED(1)) { rle = rle_img_advance_line(rle, rle_limit, src_width); dy -= INT_TO_SCALED(1); ++y; } } else { rle = rle_start; /* y-scaling, reuse the last rle encoded line */ } } } void blend_rgb24 (uint8_t * img, vo_overlay_t * img_overl, int img_width, int img_height, int dst_width, int dst_height) { clut_t* clut = (clut_t*) img_overl->clip_color; uint8_t *trans; int src_width = img_overl->width; int src_height = img_overl->height; rle_elem_t *rle = img_overl->rle; rle_elem_t *rle_limit = rle + img_overl->num_rle; int x, y, x1_scaled, x2_scaled; int dy, dy_step, x_scale; /* scaled 2**SCALE_SHIFT */ int clip_right; uint8_t *img_pix; dy_step = INT_TO_SCALED(dst_height) / img_height; x_scale = INT_TO_SCALED(img_width) / dst_width; img_pix = img + 3 * ( (img_overl->y * img_height / dst_height) * img_width + (img_overl->x * img_width / dst_width)); trans = img_overl->clip_trans; /* avoid wraping overlay if drawing to small image */ if( (img_overl->x + img_overl->clip_right) < dst_width ) clip_right = img_overl->clip_right; else clip_right = dst_width - 1 - img_overl->x; /* avoid buffer overflow */ if( (src_height + img_overl->y) >= dst_height ) src_height = dst_height - 1 - img_overl->y; for (dy = y = 0; y < src_height && rle < rle_limit; ) { int mask = !(img_overl->clip_top > y || img_overl->clip_bottom < y); rle_elem_t *rle_start = rle; for (x = x1_scaled = 0; x < src_width;) { uint8_t clr; uint16_t o; int rlelen; clr = rle->color; o = trans[clr]; rlelen = rle->len; if (o && mask) { /* threat cases where clipping border is inside rle->len pixels */ if ( img_overl->clip_left > x ) { if( img_overl->clip_left < x + rlelen ) { x1_scaled = SCALED_TO_INT( img_overl->clip_left * x_scale ); rlelen -= img_overl->clip_left - x; x += img_overl->clip_left - x; } else { o = 0; } } else if( clip_right < x + rlelen ) { if( clip_right > x ) { x2_scaled = SCALED_TO_INT( clip_right * x_scale); mem_blend24(img_pix + x1_scaled*3, clut[clr].cb, clut[clr].cr, clut[clr].y, o, x2_scaled-x1_scaled); o = 0; } else { o = 0; } } } x2_scaled = SCALED_TO_INT((x + rlelen) * x_scale); if (o && mask) { mem_blend24(img_pix + x1_scaled*3, clut[clr].cb, clut[clr].cr, clut[clr].y, o, x2_scaled-x1_scaled); } x1_scaled = x2_scaled; x += rlelen; rle++; if (rle >= rle_limit) break; } img_pix += img_width * 3; dy += dy_step; if (dy >= INT_TO_SCALED(1)) { dy -= INT_TO_SCALED(1); ++y; while (dy >= INT_TO_SCALED(1)) { rle = rle_img_advance_line(rle, rle_limit, src_width); dy -= INT_TO_SCALED(1); ++y; } } else { rle = rle_start; /* y-scaling, reuse the last rle encoded line */ } } } void blend_rgb32 (uint8_t * img, vo_overlay_t * img_overl, int img_width, int img_height, int dst_width, int dst_height) { clut_t* clut = (clut_t*) img_overl->clip_color; uint8_t *trans; int src_width = img_overl->width; int src_height = img_overl->height; rle_elem_t *rle = img_overl->rle; rle_elem_t *rle_limit = rle + img_overl->num_rle; int x, y, x1_scaled, x2_scaled; int dy, dy_step, x_scale; /* scaled 2**SCALE_SHIFT */ int clip_right; uint8_t *img_pix; dy_step = INT_TO_SCALED(dst_height) / img_height; x_scale = INT_TO_SCALED(img_width) / dst_width; img_pix = img + 4 * ( (img_overl->y * img_height / dst_height) * img_width + (img_overl->x * img_width / dst_width)); trans = img_overl->clip_trans; /* avoid wraping overlay if drawing to small image */ if( (img_overl->x + img_overl->clip_right) < dst_width ) clip_right = img_overl->clip_right; else clip_right = dst_width - 1 - img_overl->x; /* avoid buffer overflow */ if( (src_height + img_overl->y) >= dst_height ) src_height = dst_height - 1 - img_overl->y; for (y = dy = 0; y < src_height && rle < rle_limit; ) { int mask = !(img_overl->clip_top > y || img_overl->clip_bottom < y); rle_elem_t *rle_start = rle; for (x = x1_scaled = 0; x < src_width;) { uint8_t clr; uint16_t o; int rlelen; clr = rle->color; o = trans[clr]; rlelen = rle->len; if (o && mask) { /* threat cases where clipping border is inside rle->len pixels */ if ( img_overl->clip_left > x ) { if( img_overl->clip_left < x + rlelen ) { x1_scaled = SCALED_TO_INT( img_overl->clip_left * x_scale ); rlelen -= img_overl->clip_left - x; x += img_overl->clip_left - x; } else { o = 0; } } else if( clip_right < x + rlelen ) { if( clip_right > x ) { x2_scaled = SCALED_TO_INT( clip_right * x_scale); mem_blend24_32(img_pix + x1_scaled*4, clut[clr].cb, clut[clr].cr, clut[clr].y, o, x2_scaled-x1_scaled); o = 0; } else { o = 0; } } } x2_scaled = SCALED_TO_INT((x + rlelen) * x_scale); if (o && mask) { mem_blend24_32(img_pix + x1_scaled*4, clut[clr].cb, clut[clr].cr, clut[clr].y, o, x2_scaled-x1_scaled); } x1_scaled = x2_scaled; x += rlelen; rle++; if (rle >= rle_limit) break; } img_pix += img_width * 4; dy += dy_step; if (dy >= INT_TO_SCALED(1)) { dy -= INT_TO_SCALED(1); ++y; while (dy >= INT_TO_SCALED(1)) { rle = rle_img_advance_line(rle, rle_limit, src_width); dy -= INT_TO_SCALED(1); ++y; } } else { rle = rle_start; /* y-scaling, reuse the last rle encoded line */ } } } static void mem_blend8(uint8_t *mem, uint8_t val, uint8_t o, size_t sz) { uint8_t *limit = mem + sz; while (mem < limit) { *mem = BLEND_BYTE(*mem, val, o); mem++; } } void blend_yuv (uint8_t *dst_base[3], vo_overlay_t * img_overl, int dst_width, int dst_height) { clut_t *my_clut; uint8_t *my_trans; int src_width = img_overl->width; int src_height = img_overl->height; rle_elem_t *rle = img_overl->rle; rle_elem_t *rle_limit = rle + img_overl->num_rle; int x_off = img_overl->x; int y_off = img_overl->y; int ymask,xmask; int rle_this_bite; int rle_remainder; int rlelen; int x, y; int clip_right; uint8_t clr=0; uint8_t *dst_y = dst_base[0] + dst_width * y_off + x_off; uint8_t *dst_cr = dst_base[2] + (y_off / 2) * (dst_width / 2) + (x_off / 2) + 1; uint8_t *dst_cb = dst_base[1] + (y_off / 2) * (dst_width / 2) + (x_off / 2) + 1; #ifdef LOG_BLEND_YUV printf("overlay_blend started x=%d, y=%d, w=%d h=%d\n",img_overl->x,img_overl->y,img_overl->width,img_overl->height); #endif my_clut = (clut_t*) img_overl->clip_color; my_trans = img_overl->clip_trans; /* avoid wraping overlay if drawing to small image */ if( (x_off + img_overl->clip_right) < dst_width ) clip_right = img_overl->clip_right; else clip_right = dst_width - 1 - x_off; /* avoid buffer overflow */ if( (src_height + y_off) >= dst_height ) src_height = dst_height - 1 - y_off; rlelen=rle_remainder=0; for (y = 0; y < src_height; y++) { ymask = ((img_overl->clip_top > y) || (img_overl->clip_bottom < y)); xmask = 0; #ifdef LOG_BLEND_YUV printf("X started ymask=%d y=%d src_height=%d\n",ymask, y, src_height); #endif for (x = 0; x < src_width;) { uint16_t o; #ifdef LOG_BLEND_YUV printf("1:rle_len=%d, remainder=%d, x=%d\n",rlelen, rle_remainder, x); #endif if ((rlelen < 0) || (rle_remainder < 0)) { printf("alphablend: major bug in blend_yuv < 0\n"); } if (rlelen == 0) { rle_remainder = rlelen = rle->len; clr = rle->color; rle++; } if (rle_remainder == 0) { rle_remainder = rlelen; } if ((rle_remainder + x) > src_width) { /* Do something for long rlelengths */ rle_remainder = src_width - x; ; } #ifdef LOG_BLEND_YUV printf("2:rle_len=%d, remainder=%d, x=%d\n",rlelen, rle_remainder, x); #endif if (ymask == 0) { if (x <= img_overl->clip_left) { /* Starts outside clip area */ if ((x + rle_remainder - 1) > img_overl->clip_left ) { #ifdef LOG_BLEND_YUV printf("Outside clip left %d, ending inside\n", img_overl->clip_left); #endif /* Cutting needed, starts outside, ends inside */ rle_this_bite = (img_overl->clip_left - x + 1); rle_remainder -= rle_this_bite; rlelen -= rle_this_bite; my_clut = (clut_t*) img_overl->color; my_trans = img_overl->trans; xmask = 0; } else { #ifdef LOG_BLEND_YUV printf("Outside clip left %d, ending outside\n", img_overl->clip_left); #endif /* no cutting needed, starts outside, ends outside */ rle_this_bite = rle_remainder; rle_remainder = 0; rlelen -= rle_this_bite; my_clut = (clut_t*) img_overl->color; my_trans = img_overl->trans; xmask = 0; } } else if (x < clip_right) { /* Starts inside clip area */ if ((x + rle_remainder) > clip_right ) { #ifdef LOG_BLEND_YUV printf("Inside clip right %d, ending outside\n", clip_right); #endif /* Cutting needed, starts inside, ends outside */ rle_this_bite = (clip_right - x); rle_remainder -= rle_this_bite; rlelen -= rle_this_bite; my_clut = (clut_t*) img_overl->clip_color; my_trans = img_overl->clip_trans; xmask++; } else { #ifdef LOG_BLEND_YUV printf("Inside clip right %d, ending inside\n", clip_right); #endif /* no cutting needed, starts inside, ends inside */ rle_this_bite = rle_remainder; rle_remainder = 0; rlelen -= rle_this_bite; my_clut = (clut_t*) img_overl->clip_color; my_trans = img_overl->clip_trans; xmask++; } } else if (x >= clip_right) { /* Starts outside clip area, ends outsite clip area */ if ((x + rle_remainder ) > src_width ) { #ifdef LOG_BLEND_YUV printf("Outside clip right %d, ending eol\n", clip_right); #endif /* Cutting needed, starts outside, ends at right edge */ /* It should never reach here due to the earlier test of src_width */ rle_this_bite = (src_width - x ); rle_remainder -= rle_this_bite; rlelen -= rle_this_bite; my_clut = (clut_t*) img_overl->color; my_trans = img_overl->trans; xmask = 0; } else { /* no cutting needed, starts outside, ends outside */ #ifdef LOG_BLEND_YUV printf("Outside clip right %d, ending outside\n", clip_right); #endif rle_this_bite = rle_remainder; rle_remainder = 0; rlelen -= rle_this_bite; my_clut = (clut_t*) img_overl->color; my_trans = img_overl->trans; xmask = 0; } } } else { /* Outside clip are due to y */ /* no cutting needed, starts outside, ends outside */ rle_this_bite = rle_remainder; rle_remainder = 0; rlelen -= rle_this_bite; my_clut = (clut_t*) img_overl->color; my_trans = img_overl->trans; xmask = 0; } o = my_trans[clr]; #ifdef LOG_BLEND_YUV printf("Trans=%d clr=%d xmask=%d my_clut[clr]=%d\n",o, clr, xmask, my_clut[clr].y); #endif if (o) { if(o >= 15) { memset(dst_y + x, my_clut[clr].y, rle_this_bite); if (y & 1) { memset(dst_cr + (x >> 1), my_clut[clr].cr, (rle_this_bite+1) >> 1); memset(dst_cb + (x >> 1), my_clut[clr].cb, (rle_this_bite+1) >> 1); } } else { mem_blend8(dst_y + x, my_clut[clr].y, o, rle_this_bite); if (y & 1) { /* Blending cr and cb should use a different function, with pre -128 to each sample */ mem_blend8(dst_cr + (x >> 1), my_clut[clr].cr, o, (rle_this_bite+1) >> 1); mem_blend8(dst_cb + (x >> 1), my_clut[clr].cb, o, (rle_this_bite+1) >> 1); } } } #ifdef LOG_BLEND_YUV printf("rle_this_bite=%d, remainder=%d, x=%d\n",rle_this_bite, rle_remainder, x); #endif x += rle_this_bite; if (rle >= rle_limit) { #ifdef LOG_BLEND_YUV printf("x-rle_limit\n"); #endif break; } } if (rle >= rle_limit) { #ifdef LOG_BLEND_YUV printf("x-rle_limit\n"); #endif break; } dst_y += dst_width; if (y & 1) { dst_cr += (dst_width + 1) / 2; dst_cb += (dst_width + 1) / 2; } } #ifdef LOG_BLEND_YUV printf("overlay_blend ended\n"); #endif } void blend_yuy2 (uint8_t * dst_img, vo_overlay_t * img_overl, int dst_width, int dst_height) { clut_t *my_clut; uint8_t *my_trans; int src_width = img_overl->width; int src_height = img_overl->height; rle_elem_t *rle = img_overl->rle; rle_elem_t *rle_limit = rle + img_overl->num_rle; int x_off = img_overl->x; int y_off = img_overl->y; int mask; int x, y; int l; int clip_right; uint32_t yuy2; uint8_t *dst_y = dst_img + 2 * (dst_width * y_off + x_off); uint8_t *dst; my_clut = (clut_t*) img_overl->clip_color; my_trans = img_overl->clip_trans; /* avoid wraping overlay if drawing to small image */ if( (x_off + img_overl->clip_right) < dst_width ) clip_right = img_overl->clip_right; else clip_right = dst_width - 1 - x_off; /* avoid buffer overflow */ if( (src_height + y_off) >= dst_height ) src_height = dst_height - 1 - y_off; for (y = 0; y < src_height; y++) { mask = !(img_overl->clip_top > y || img_overl->clip_bottom < y); dst = dst_y; for (x = 0; x < src_width;) { uint8_t clr; uint16_t o; int rlelen; clr = rle->color; o = my_trans[clr]; rlelen = rle->len; if (o && mask) { /* threat cases where clipping border is inside rle->len pixels */ if ( img_overl->clip_left > x ) { if( img_overl->clip_left < x + rlelen ) { rlelen -= img_overl->clip_left - x; x += img_overl->clip_left - x; } else { o = 0; } } else if( clip_right < x + rlelen ) { if( clip_right > x ) { /* fixme: case not implemented */ o = 0; } else { o = 0; } } } if (o && mask) { l = rlelen>>1; if( !(x & 1) ) { yuy2 = my_clut[clr].y + (my_clut[clr].cb << 8) + (my_clut[clr].y << 16) + (my_clut[clr].cr << 24); } else { yuy2 = my_clut[clr].y + (my_clut[clr].cr << 8) + (my_clut[clr].y << 16) + (my_clut[clr].cb << 24); } if (o >= 15) { while(l--) { *((uint32_t *)dst)++ = yuy2; } if(rlelen & 1) *((uint16_t *)dst)++ = yuy2 & 0xffff; } else { if( l ) { mem_blend32(dst, (uint8_t *)&yuy2, o, l); dst += 4*l; } if(rlelen & 1) { *dst = BLEND_BYTE(*dst, *((uint8_t *)&yuy2), o); dst++; *dst = BLEND_BYTE(*dst, *((uint8_t *)&yuy2+1), o); dst++; } } } else { dst += rlelen*2; } x += rlelen; rle++; if (rle >= rle_limit) break; } if (rle >= rle_limit) break; dst_y += dst_width*2; } }