/* rdesktop: A Remote Desktop Protocol client. Protocol services - RDP encryption and licensing Copyright (C) Matthew Chapman 1999-2002 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "rdesktop.h" //#ifdef WITH_OPENSSL #include #include #include #include //#else //#include "crypto/rc4.h" //#include "crypto/md5.h" //#include "crypto/sha.h" //#include "crypto/bn.h" //#endif extern char hostname[16]; extern int g_width; extern int g_height; extern int keylayout; extern BOOL encryption; extern BOOL licence_issued; extern int server_bpp; static int rc4_key_len; static RC4_KEY rc4_decrypt_key; static RC4_KEY rc4_encrypt_key; static uint8 sec_sign_key[16]; static uint8 sec_decrypt_key[16]; static uint8 sec_encrypt_key[16]; static uint8 sec_decrypt_update_key[16]; static uint8 sec_encrypt_update_key[16]; static uint8 sec_crypted_random[SEC_MODULUS_SIZE]; /* * General purpose 48-byte transformation, using two 32-byte salts (generally, * a client and server salt) and a global salt value used for padding. * Both SHA1 and MD5 algorithms are used. */ void sec_hash_48(uint8 * out, uint8 * in, uint8 * salt1, uint8 * salt2, uint8 salt) { uint8 shasig[20]; uint8 pad[4]; SHA_CTX sha; MD5_CTX md5; int i; for (i = 0; i < 3; i++) { memset(pad, salt + i, i + 1); SHA1_Init(&sha); SHA1_Update(&sha, pad, i + 1); SHA1_Update(&sha, in, 48); SHA1_Update(&sha, salt1, 32); SHA1_Update(&sha, salt2, 32); SHA1_Final(shasig, &sha); MD5_Init(&md5); MD5_Update(&md5, in, 48); MD5_Update(&md5, shasig, 20); MD5_Final(&out[i * 16], &md5); } } /* * Weaker 16-byte transformation, also using two 32-byte salts, but * only using a single round of MD5. */ void sec_hash_16(uint8 * out, uint8 * in, uint8 * salt1, uint8 * salt2) { MD5_CTX md5; MD5_Init(&md5); MD5_Update(&md5, in, 16); MD5_Update(&md5, salt1, 32); MD5_Update(&md5, salt2, 32); MD5_Final(out, &md5); } /* Reduce key entropy from 64 to 40 bits */ static void sec_make_40bit(uint8 * key) { key[0] = 0xd1; key[1] = 0x26; key[2] = 0x9e; } /* Generate a session key and RC4 keys, given client and server randoms */ static void sec_generate_keys(uint8 * client_key, uint8 * server_key, int rc4_key_size) { uint8 session_key[48]; uint8 temp_hash[48]; uint8 input[48]; /* Construct input data to hash */ memcpy(input, client_key, 24); memcpy(input + 24, server_key, 24); /* Generate session key - two rounds of sec_hash_48 */ sec_hash_48(temp_hash, input, client_key, server_key, 65); sec_hash_48(session_key, temp_hash, client_key, server_key, 88); /* Store first 16 bytes of session key, for generating signatures */ memcpy(sec_sign_key, session_key, 16); /* Generate RC4 keys */ sec_hash_16(sec_decrypt_key, &session_key[16], client_key, server_key); sec_hash_16(sec_encrypt_key, &session_key[32], client_key, server_key); if (rc4_key_size == 1) { DEBUG(("40-bit encryption enabled\n")); sec_make_40bit(sec_sign_key); sec_make_40bit(sec_decrypt_key); sec_make_40bit(sec_encrypt_key); rc4_key_len = 8; } else { DEBUG(("128-bit encryption enabled\n")); rc4_key_len = 16; } /* Save initial RC4 keys as update keys */ memcpy(sec_decrypt_update_key, sec_decrypt_key, 16); memcpy(sec_encrypt_update_key, sec_encrypt_key, 16); /* Initialise RC4 state arrays */ RC4_set_key(&rc4_decrypt_key, rc4_key_len, sec_decrypt_key); RC4_set_key(&rc4_encrypt_key, rc4_key_len, sec_encrypt_key); } static uint8 pad_54[40] = { 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54 }; static uint8 pad_92[48] = { 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92 }; /* Output a uint32 into a buffer (little-endian) */ void buf_out_uint32(uint8 * buffer, uint32 value) { buffer[0] = (value) & 0xff; buffer[1] = (value >> 8) & 0xff; buffer[2] = (value >> 16) & 0xff; buffer[3] = (value >> 24) & 0xff; } /* Generate a signature hash, using a combination of SHA1 and MD5 */ void sec_sign(uint8 * signature, int siglen, uint8 * session_key, int keylen, uint8 * data, int datalen) { uint8 shasig[20]; uint8 md5sig[16]; uint8 lenhdr[4]; SHA_CTX sha; MD5_CTX md5; buf_out_uint32(lenhdr, datalen); SHA1_Init(&sha); SHA1_Update(&sha, session_key, keylen); SHA1_Update(&sha, pad_54, 40); SHA1_Update(&sha, lenhdr, 4); SHA1_Update(&sha, data, datalen); SHA1_Final(shasig, &sha); MD5_Init(&md5); MD5_Update(&md5, session_key, keylen); MD5_Update(&md5, pad_92, 48); MD5_Update(&md5, shasig, 20); MD5_Final(md5sig, &md5); memcpy(signature, md5sig, siglen); } /* Update an encryption key - similar to the signing process */ static void sec_update(uint8 * key, uint8 * update_key) { uint8 shasig[20]; SHA_CTX sha; MD5_CTX md5; RC4_KEY update; SHA1_Init(&sha); SHA1_Update(&sha, update_key, rc4_key_len); SHA1_Update(&sha, pad_54, 40); SHA1_Update(&sha, key, rc4_key_len); SHA1_Final(shasig, &sha); MD5_Init(&md5); MD5_Update(&md5, update_key, rc4_key_len); MD5_Update(&md5, pad_92, 48); MD5_Update(&md5, shasig, 20); MD5_Final(key, &md5); RC4_set_key(&update, rc4_key_len, key); RC4(&update, rc4_key_len, key, key); if (rc4_key_len == 8) sec_make_40bit(key); } /* Encrypt data using RC4 */ static void sec_encrypt(uint8 * data, int length) { static int use_count; if (use_count == 4096) { sec_update(sec_encrypt_key, sec_encrypt_update_key); RC4_set_key(&rc4_encrypt_key, rc4_key_len, sec_encrypt_key); use_count = 0; } RC4(&rc4_encrypt_key, length, data, data); use_count++; } /* Decrypt data using RC4 */ static void sec_decrypt(uint8 * data, int length) { static int use_count; if (use_count == 4096) { sec_update(sec_decrypt_key, sec_decrypt_update_key); RC4_set_key(&rc4_decrypt_key, rc4_key_len, sec_decrypt_key); use_count = 0; } RC4(&rc4_decrypt_key, length, data, data); use_count++; } static void reverse(uint8 * p, int len) { int i, j; uint8 temp; for (i = 0, j = len - 1; i < j; i++, j--) { temp = p[i]; p[i] = p[j]; p[j] = temp; } } /* Perform an RSA public key encryption operation */ static void sec_rsa_encrypt(uint8 * out, uint8 * in, int len, uint8 * modulus, uint8 * exponent) { BN_CTX *ctx; BIGNUM mod, exp, x, y; uint8 inr[SEC_MODULUS_SIZE]; int outlen; reverse(modulus, SEC_MODULUS_SIZE); reverse(exponent, SEC_EXPONENT_SIZE); memcpy(inr, in, len); reverse(inr, len); ctx = BN_CTX_new(); BN_init(&mod); BN_init(&exp); BN_init(&x); BN_init(&y); BN_bin2bn(modulus, SEC_MODULUS_SIZE, &mod); BN_bin2bn(exponent, SEC_EXPONENT_SIZE, &exp); BN_bin2bn(inr, len, &x); BN_mod_exp(&y, &x, &exp, &mod, ctx); outlen = BN_bn2bin(&y, out); reverse(out, outlen); if (outlen < SEC_MODULUS_SIZE) memset(out + outlen, 0, SEC_MODULUS_SIZE - outlen); BN_free(&y); BN_clear_free(&x); BN_free(&exp); BN_free(&mod); BN_CTX_free(ctx); } /* Initialise secure transport packet */ STREAM sec_init(uint32 flags, int maxlen) { int hdrlen; STREAM s; if (!licence_issued) hdrlen = (flags & SEC_ENCRYPT) ? 12 : 4; else hdrlen = (flags & SEC_ENCRYPT) ? 12 : 0; s = mcs_init(maxlen + hdrlen); s_push_layer(s, sec_hdr, hdrlen); return s; } /* Transmit secure transport packet */ void sec_send(STREAM s, uint32 flags) { int datalen; s_pop_layer(s, sec_hdr); if (!licence_issued || (flags & SEC_ENCRYPT)) out_uint32_le(s, flags); if (flags & SEC_ENCRYPT) { flags &= ~SEC_ENCRYPT; datalen = s->end - s->p - 8; #if WITH_DEBUG DEBUG(("Sending encrypted packet:\n")); hexdump(s->p + 8, datalen); #endif sec_sign(s->p, 8, sec_sign_key, rc4_key_len, s->p + 8, datalen); sec_encrypt(s->p + 8, datalen); } mcs_send(s); } /* Transfer the client random to the server */ static void sec_establish_key(void) { uint32 length = SEC_MODULUS_SIZE + SEC_PADDING_SIZE; uint32 flags = SEC_CLIENT_RANDOM; STREAM s; s = sec_init(flags, 76); out_uint32_le(s, length); out_uint8p(s, sec_crypted_random, SEC_MODULUS_SIZE); out_uint8s(s, SEC_PADDING_SIZE); s_mark_end(s); sec_send(s, flags); } /* Output connect initial data blob */ static void sec_out_mcs_data(STREAM s) { int hostlen = 2 * strlen(hostname); if (hostlen > 30) hostlen = 30; out_uint16_be(s, 5); /* unknown */ out_uint16_be(s, 0x14); out_uint8(s, 0x7c); out_uint16_be(s, 1); out_uint16_be(s, (158 | 0x8000)); /* remaining length */ out_uint16_be(s, 8); /* length? */ out_uint16_be(s, 16); out_uint8(s, 0); out_uint16_le(s, 0xc001); out_uint8(s, 0); out_uint32_le(s, 0x61637544); /* "Duca" ?! */ out_uint16_be(s, (144 | 0x8000)); /* remaining length */ /* Client information */ out_uint16_le(s, SEC_TAG_CLI_INFO); out_uint16_le(s, 136); /* length */ out_uint16_le(s, 1); out_uint16_le(s, 8); out_uint16_le(s, g_width); out_uint16_le(s, g_height); out_uint16_le(s, 0xca01); out_uint16_le(s, 0xaa03); out_uint32_le(s, keylayout); out_uint32_le(s, 419); /* client build? we are 419 compatible :-) */ /* Unicode name of client, padded to 32 bytes */ rdp_out_unistr(s, hostname, hostlen); out_uint8s(s, 30 - hostlen); out_uint32_le(s, 4); out_uint32(s, 0); out_uint32_le(s, 12); out_uint8s(s, 64); /* reserved? 4 + 12 doublewords */ switch (server_bpp) { case 8: out_uint16_le(s, 0xca01); break; case 15: out_uint16_le(s, 0xca02); break; case 16: out_uint16_le(s, 0xca03); break; case 24: out_uint16_le(s, 0xca04); break; } out_uint16(s, 0); /* Client encryption settings */ out_uint16_le(s, SEC_TAG_CLI_CRYPT); out_uint16_le(s, 8); /* length */ out_uint32_le(s, encryption ? 0x3 : 0); /* encryption supported, 128-bit supported */ s_mark_end(s); } /* Parse a public key structure */ static BOOL sec_parse_public_key(STREAM s, uint8 ** modulus, uint8 ** exponent) { uint32 magic, modulus_len; in_uint32_le(s, magic); if (magic != SEC_RSA_MAGIC) { error("RSA magic 0x%x\n", magic); return False; } in_uint32_le(s, modulus_len); if (modulus_len != SEC_MODULUS_SIZE + SEC_PADDING_SIZE) { error("modulus len 0x%x\n", modulus_len); return False; } in_uint8s(s, 8); /* modulus_bits, unknown */ in_uint8p(s, *exponent, SEC_EXPONENT_SIZE); in_uint8p(s, *modulus, SEC_MODULUS_SIZE); in_uint8s(s, SEC_PADDING_SIZE); return s_check(s); } /* Parse a crypto information structure */ static BOOL sec_parse_crypt_info(STREAM s, uint32 * rc4_key_size, uint8 ** server_random, uint8 ** modulus, uint8 ** exponent) { uint32 crypt_level, random_len, rsa_info_len; uint16 tag, length; uint8 *next_tag, *end; in_uint32_le(s, *rc4_key_size); /* 1 = 40-bit, 2 = 128-bit */ in_uint32_le(s, crypt_level); /* 1 = low, 2 = medium, 3 = high */ if (crypt_level == 0) /* no encryptation */ return False; in_uint32_le(s, random_len); in_uint32_le(s, rsa_info_len); if (random_len != SEC_RANDOM_SIZE) { error("random len %d\n", random_len); return False; } in_uint8p(s, *server_random, random_len); /* RSA info */ end = s->p + rsa_info_len; if (end > s->end) return False; in_uint8s(s, 12); /* unknown */ while (s->p < end) { in_uint16_le(s, tag); in_uint16_le(s, length); next_tag = s->p + length; switch (tag) { case SEC_TAG_PUBKEY: if (!sec_parse_public_key(s, modulus, exponent)) return False; break; case SEC_TAG_KEYSIG: /* Is this a Microsoft key that we just got? */ /* Care factor: zero! */ break; default: unimpl("crypt tag 0x%x\n", tag); } s->p = next_tag; } return s_check_end(s); } /* Process crypto information blob */ static void sec_process_crypt_info(STREAM s) { uint8 *server_random, *modulus, *exponent; uint8 client_random[SEC_RANDOM_SIZE]; uint32 rc4_key_size; if (!sec_parse_crypt_info(s, &rc4_key_size, &server_random, &modulus, &exponent)) return; /* Generate a client random, and hence determine encryption keys */ generate_random(client_random); sec_rsa_encrypt(sec_crypted_random, client_random, SEC_RANDOM_SIZE, modulus, exponent); sec_generate_keys(client_random, server_random, rc4_key_size); } /* Process connect response data blob */ static void sec_process_mcs_data(STREAM s) { uint16 tag, length; uint8 *next_tag; uint8 len; in_uint8s(s, 21); /* header */ in_uint8(s, len); if (len & 0x80) in_uint8(s, len); while (s->p < s->end) { in_uint16_le(s, tag); in_uint16_le(s, length); if (length <= 4) return; next_tag = s->p + length - 4; switch (tag) { case SEC_TAG_SRV_INFO: case SEC_TAG_SRV_3: break; case SEC_TAG_SRV_CRYPT: sec_process_crypt_info(s); break; default: unimpl("response tag 0x%x\n", tag); } s->p = next_tag; } } /* Receive secure transport packet */ STREAM sec_recv(void) { uint32 sec_flags; STREAM s; while ((s = mcs_recv()) != NULL) { if (encryption || !licence_issued) { in_uint32_le(s, sec_flags); if (sec_flags & SEC_LICENCE_NEG) { licence_process(s); continue; } if (sec_flags & SEC_ENCRYPT) { in_uint8s(s, 8); /* signature */ sec_decrypt(s->p, s->end - s->p); } } return s; } return NULL; } /* Establish a secure connection */ BOOL sec_connect(char *server) { struct stream mcs_data; /* We exchange some RDP data during the MCS-Connect */ mcs_data.size = 512; mcs_data.p = mcs_data.data = (unsigned char*)xmalloc(mcs_data.size); sec_out_mcs_data(&mcs_data); if (!mcs_connect(server, &mcs_data)) return False; sec_process_mcs_data(&mcs_data); if (encryption) sec_establish_key(); xfree(mcs_data.data); return True; } /* Disconnect a connection */ void sec_disconnect(void) { mcs_disconnect(); }