author | Michael Krelin <hacker@klever.net> | 2018-07-25 21:41:27 (UTC) |
---|---|---|
committer | Michael Krelin <hacker@klever.net> | 2018-07-25 21:41:27 (UTC) |
commit | 5ab7711ef9b9180121e7dc4e8d33afd5a5ff97d1 (patch) (unidiff) | |
tree | cef89db5a1b1ebc9be4da53505614aea535477c0 | |
parent | cd3c9592b1b26ed98eda97fbf5b098bdcf4c1abd (diff) | |
download | extrudery-5ab7711ef9b9180121e7dc4e8d33afd5a5ff97d1.zip extrudery-5ab7711ef9b9180121e7dc4e8d33afd5a5ff97d1.tar.gz extrudery-5ab7711ef9b9180121e7dc4e8d33afd5a5ff97d1.tar.bz2 |
make printable position conditional
and remove the diameter parameter, because why :)
-rw-r--r-- | multimixer.scad | 14 |
1 files changed, 9 insertions, 5 deletions
diff --git a/multimixer.scad b/multimixer.scad index 21f71e4..80f41f1 100644 --- a/multimixer.scad +++ b/multimixer.scad | |||
@@ -4,71 +4,75 @@ epsilon=.01; | |||
4 | use <pushfittery.scad>; | 4 | use <pushfittery.scad>; |
5 | include <pushfit_data.scad>; | 5 | include <pushfit_data.scad>; |
6 | 6 | ||
7 | module multimixer( | 7 | module multimixer( |
8 | filament_d = 1.75, | 8 | filament_d = 1.75, |
9 | liner_od = 4, liner_id = 2, | 9 | liner_od = 4, liner_id = 2, |
10 | angle = 15, // to the vertical (output) axis | 10 | angle = 15, // to the vertical (output) axis |
11 | inputs = 4, | 11 | inputs = 4, |
12 | minshell = 2*extrusion_width, | 12 | minshell = 2*extrusion_width, |
13 | shell = 5*extrusion_width, | 13 | shell = 5*extrusion_width, |
14 | pf = pushfit_embeddest, | 14 | pf = pushfit_embeddest, |
15 | debug = 0, // how many inputs -1 the debug cutout spans | 15 | debug = 0, // how many inputs -1 the debug cutout spans |
16 | print = false, | ||
16 | ) { | 17 | ) { |
17 | fnd = 4*PI; fnr = 2*fnd; | 18 | fnd = 4*PI; fnr = 2*fnd; |
18 | 19 | ||
19 | pushfit_d = pf_d(pf); | 20 | pushfit_d = pf_d(pf); |
20 | pushfit_h = pf_h(pf); | 21 | pushfit_h = pf_h(pf); |
21 | 22 | ||
22 | angular_step = 360/inputs; | 23 | angular_step = 360/inputs; |
23 | inputogon_angle = 180*(inputs-2)/inputs; | 24 | inputogon_angle = 180*(inputs-2)/inputs; |
24 | 25 | ||
25 | sinsin = sin(angle)*sin(angular_step/2); | 26 | sinsin = sin(angle)*sin(angular_step/2); |
26 | function l_to(d) = d*cos(asin(sinsin))/sinsin; | 27 | function l_to(d) = d*cos(asin(sinsin))/sinsin; |
27 | l_output = liner_od; | 28 | l_output = liner_od; |
28 | l_input = l_to(pushfit_d/2+minshell); | 29 | l_input = l_to(pushfit_d/2+minshell); |
29 | l_fork = l_to(liner_id/2); | 30 | l_fork = l_to(liner_id/2); |
30 | l_narrow = l_to(liner_od/2+minshell); | 31 | l_narrow = l_to(liner_od/2+minshell); |
31 | 32 | ||
32 | module forinputs() { | 33 | module forinputs() { |
33 | for(zr=[0:angular_step:359]) rotate([0,0,zr]) rotate([0,angle,0]) children(); | 34 | for(zr=[0:angular_step:359]) rotate([0,0,zr]) rotate([0,angle,0]) children(); |
34 | }//forinputs module | 35 | }//forinputs module |
35 | module foroutput() { | 36 | module foroutput() { |
36 | rotate([180,0,0]) children(); | 37 | rotate([180,0,0]) children(); |
37 | } | 38 | } |
38 | 39 | ||
39 | //translate([pf_d(pf)/2+shell,0,0]) | 40 | module laydown() { |
40 | //translate([0,0,l_output+pushfit_h]) | 41 | r = pushfit_d/2+shell; |
41 | module laydown(dia) { | ||
42 | r = dia/2; | ||
43 | h_bottom = l_output+pushfit_h; | 42 | h_bottom = l_output+pushfit_h; |
44 | /* The top point on the cylinder that will touch the bed */ | 43 | /* The top point on the cylinder that will touch the bed */ |
45 | x0 = r*cos(angular_step/2); | 44 | x0 = r*cos(angular_step/2); |
46 | y0 = r*sin(angular_step/2); | 45 | y0 = r*sin(angular_step/2); |
47 | z0 = l_input+pushfit_h; | 46 | z0 = l_input+pushfit_h; |
48 | /* The same point after rotation by "angle" around Y axis */ | 47 | /* The same point after rotation by "angle" around Y axis */ |
49 | x1 = z0*sin(angle)+x0*cos(angle); | 48 | x1 = z0*sin(angle)+x0*cos(angle); |
50 | y1 = y0; | 49 | y1 = y0; |
51 | z1 = z0*cos(angle)-x0*sin(angle); | 50 | z1 = z0*cos(angle)-x0*sin(angle); |
52 | ax1 = atan(y1/x1); | 51 | ax1 = atan(y1/x1); |
53 | /* And its x-coordinate after final "angular_step/2" Z-rotation */ | 52 | /* And its x-coordinate after final "angular_step/2" Z-rotation */ |
54 | ax2 = ax1-angular_step/2; | 53 | ax2 = ax1-angular_step/2; |
55 | x2 = x1*cos(ax2)/cos(ax1); | 54 | x2 = x1*cos(ax2)/cos(ax1); |
56 | laydown_angle = atan((x2-r)/(z1+h_bottom)); | 55 | laydown_angle = atan((x2-r)/(z1+h_bottom)); |
57 | rotate([90-laydown_angle,0,0]) | 56 | rotate([90-laydown_angle,0,0]) |
58 | translate([0,r,h_bottom]) | 57 | translate([0,r,h_bottom]) |
59 | rotate([0,0,angular_step/2-90]) | 58 | rotate([0,0,angular_step/2-90]) |
60 | children(); | 59 | children(); |
61 | } | 60 | } |
62 | laydown(dia=pushfit_d+shell*2) difference() { | 61 | module finalize() { |
62 | if(print) laydown() children(); | ||
63 | else children(); | ||
64 | } | ||
65 | |||
66 | finalize() difference() { | ||
63 | hull() { | 67 | hull() { |
64 | forinputs() | 68 | forinputs() |
65 | translate([0,0,l_input+pushfit_h]) mirror([0,0,1]) | 69 | translate([0,0,l_input+pushfit_h]) mirror([0,0,1]) |
66 | cylinder(d=pushfit_d+shell*2,h=epsilon,$fn=pushfit_d*fnd); | 70 | cylinder(d=pushfit_d+shell*2,h=epsilon,$fn=pushfit_d*fnd); |
67 | foroutput() | 71 | foroutput() |
68 | translate([0,0,l_output+pushfit_h]) { | 72 | translate([0,0,l_output+pushfit_h]) { |
69 | cylinder(d=pushfit_d+shell*2,h=epsilon,$fn=pushfit_d*fnd); | 73 | cylinder(d=pushfit_d+shell*2,h=epsilon,$fn=pushfit_d*fnd); |
70 | } | 74 | } |
71 | } | 75 | } |
72 | forinputs() { | 76 | forinputs() { |
73 | translate([0,0,l_input]) pushfit(pf); | 77 | translate([0,0,l_input]) pushfit(pf); |
74 | translate([0,0,l_narrow]) { | 78 | translate([0,0,l_narrow]) { |