-rw-r--r-- | multimixer.scad | 23 |
1 files changed, 22 insertions, 1 deletions
diff --git a/multimixer.scad b/multimixer.scad index 88fd6bf..0893457 100644 --- a/multimixer.scad +++ b/multimixer.scad @@ -1,79 +1,100 @@ layer_height=.2; extrusion_width=.5; epsilon=.01; use <pushfittery.scad>; include <pushfit_data.scad>; module multimixer( filament_d = 1.75, liner_od = 4, liner_id = 2, angle = 15, // to the vertical (output) axis inputs = 4, minshell = 2*extrusion_width, shell = 5*extrusion_width, pf = pushfit_embeddest, debug = true ) { fnd = 4*PI; fnr = 2*fnd; pushfit_d = pf_d(pf); pushfit_h = pf_h(pf); angular_step = 360/inputs; inputogon_angle = 180*(inputs-2)/inputs; sinsin = sin(angle)*sin(angular_step/2); function l_to(d) = d*cos(asin(sinsin))/sinsin; l_output = liner_od; l_input = l_to(pushfit_d/2+minshell); l_fork = l_to(liner_id/2); l_narrow = l_to(liner_od/2+minshell); module forinputs() { for(zr=[0:angular_step:359]) rotate([0,0,zr]) rotate([0,angle,0]) children(); }//forinputs module module foroutput() { rotate([180,0,0]) children(); } //translate([pf_d(pf)/2+shell,0,0]) //translate([0,0,l_output+pushfit_h]) - difference() { + module laydown(dia) { + r = dia/2; + h_bottom = l_output+pushfit_h; + /* The top point on the cylinder that will touch the bed */ + x0 = r*cos(angular_step/2); + y0 = r*sin(angular_step/2); + z0 = l_input+pushfit_h; + /* The same point after rotation by "angle" around Y axis */ + x1 = z0*sin(angle)+x0*cos(angle); + y1 = y0; + z1 = z0*cos(angle)-x0*sin(angle); + ax1 = atan(y1/x1); + /* And its x-coordinate after final "angular_step/2" Z-rotation */ + ax2 = ax1-angular_step/2; + x2 = x1*cos(ax2)/cos(ax1); + laydown_angle = atan((x2-r)/(z1+h_bottom)); + rotate([90-laydown_angle,0,0]) + translate([0,r,h_bottom]) + rotate([0,0,angular_step/2-90]) + children(); + } + laydown(dia=pushfit_d+shell*2) difference() { hull() { forinputs() translate([0,0,l_input+pushfit_h]) mirror([0,0,1]) cylinder(d=pushfit_d+shell*2,h=epsilon,$fn=pushfit_d*fnd); foroutput() translate([0,0,l_output+pushfit_h]) { cylinder(d=pushfit_d+shell*2,h=epsilon,$fn=pushfit_d*fnd); } } forinputs() { translate([0,0,l_input]) pushfit(pf); translate([0,0,l_narrow]) { cylinder(d=liner_od,h=l_input+1-l_narrow,$fn=liner_od*fnd); mirror([0,0,1]) translate([0,0,-epsilon]) cylinder(d1=(liner_id+liner_od)/2,d2=liner_id,h=liner_id,$fn=liner_od*fnd); } cylinder(d=liner_id,h=l_input+epsilon,$fn=liner_id*fnd); } foroutput() { translate([0,0,l_output]) pushfit(pf); cylinder(d=liner_od,h=l_input+1,$fn=liner_od*fnd); } hull() { forinputs() translate([0,0,l_fork]) cylinder(d=liner_id,h=epsilon,$fn=liner_id*fnd); foroutput() cylinder(d=liner_id,h=epsilon,$fn=liner_id*fnd); } if(debug) { translate([0,0,-20/*TODO:*/]) rotate_extrude(angle=angular_step) square([50,100]/*TODO:*/); } } } multimixer(debug=true); |