summaryrefslogtreecommitdiffabout
authorMichael Krelin <hacker@klever.net>2016-05-30 23:05:36 (UTC)
committer Michael Krelin <hacker@klever.net>2016-05-30 23:05:36 (UTC)
commitc11d5b7e8f4b8f0e7a20d81dd813a21e19b705c3 (patch) (side-by-side diff)
treec361a9b9a84be5e1983404afdc98f3e77298664e
parentd2f2c94ddbbf6c00b6ea89257f8f3e242f9216bd (diff)
downloadfanductory-c11d5b7e8f4b8f0e7a20d81dd813a21e19b705c3.zip
fanductory-c11d5b7e8f4b8f0e7a20d81dd813a21e19b705c3.tar.gz
fanductory-c11d5b7e8f4b8f0e7a20d81dd813a21e19b705c3.tar.bz2
make the blow target adjustable
blow a bit below layer printed to target the neighborhood instead of the very nozzle
Diffstat (more/less context) (ignore whitespace changes)
-rw-r--r--fanduct.scad9
1 files changed, 5 insertions, 4 deletions
diff --git a/fanduct.scad b/fanduct.scad
index 7fc1ff4..f4bb705 100644
--- a/fanduct.scad
+++ b/fanduct.scad
@@ -1,164 +1,165 @@
use <snapper.scad>;
extrusion_width=.5; layer_height=.2; // print parameters
epsilon=.005; // for finer cuts
heater_w = 16; // heatblock width
heater_l = 20; // heatblock length
nozzle_offset=4.5; // nozzle offset from the edge of heatblock
fanduct_elevation = 3; // fanduct elevation above nozzle tip
+fanduct_blowtarget = -2; // what to blow at
fanduct_h = 6; // inner height of the duct
fanduct_w = 7; // inner width of the duct
fanduct_shell=1.2; // shell thickness
fanduct_ir = sqrt(pow(heater_w/2,2)+pow(heater_l-nozzle_offset,2))+5; // inner radius
jet_angle = 60; // angular width of the jet
inlet_w = 12.5; // inlet width
inlet_h = 17; // inlet height
inlet_l = 7; // inlet length of protrusion (or depth of intrusion:))
inlet_away = 15; // how far away inlet is
hotend_clearance = 12;
snapper_d = 8; snapper_overlap=0.2; // snip snap
smooth_f = 120;
type="3jets"; // "3jets" ; // circular|3jets
module fanduct(type=type) {
// *** duct is all around!
module duct(what) {
if(what=="in") {
sh = fanduct_w+2*fanduct_shell; sv = fanduct_h+2*fanduct_shell;
smax = max(sh,sv);
rotate_extrude($fn=smooth_f)
translate([sh/2+fanduct_ir,sv/2])
scale([sh/smax,sv/smax])
circle(d=smax,$fn=4*smax);
}else if(what=="out") {
sh = fanduct_w; sv = fanduct_h;
smax = max(sh,sv);
rotate_extrude($fn=smooth_f)
translate([sh/2+fanduct_shell+fanduct_ir,sv/2+fanduct_shell])
scale([sh/smax,sv/smax])
circle(d=smax,$fn=4*smax);
}
}
// *** bumps for easier position adjustments in line with hotend
module marks(what) {
if(what=="in") {
for(y=[-1,1])
hull() for(z=[0,-fanduct_shell-fanduct_h/2])
translate([0,y*(fanduct_ir+fanduct_shell+fanduct_w/2),fanduct_shell*2+fanduct_h+z])
rotate([90,0,0]) {
cylinder(r=fanduct_shell,h=fanduct_w,center=true,$fn=30);
for(z=[-1,1]) translate([0,0,z*fanduct_w/2])
sphere(r=fanduct_shell,$fn=30);
}
}
}
// *** output
module output(what,type=type) {
module guideline(xyxy) {
module pin(xy) {
translate([xy[0],xy[1],0])
cylinder(d=2*extrusion_width,h=2*fanduct_shell+inlet_h,$fn=6);
}
xyxyxy=concat(xyxy,[[0,0]]);
for(i=[0:1:len(xyxyxy)-2])
hull() for(j=[i,i+1]) pin(xyxyxy[j]);
}
module circus(what) {
if(what=="in") {
difference() {
rotate_extrude($fn=smooth_f)
polygon([
- [0,-fanduct_elevation],
+ [0,-fanduct_elevation+fanduct_blowtarget+epsilon],
[fanduct_ir+fanduct_shell,fanduct_shell+fanduct_h/2],
[fanduct_ir+fanduct_shell+fanduct_w/2,0],
- [0,-fanduct_elevation-.1]]);
+ [0,-fanduct_elevation+fanduct_blowtarget-epsilon]]);
translate([0,0,-1])
cylinder(r=hotend_clearance,h=fanduct_h+2*fanduct_shell+2,$fn=smooth_f);
mirror([0,0,1])
translate([0,0,-epsilon])
cylinder(r=fanduct_ir+fanduct_shell+1,h=fanduct_elevation+.1+2);
}
}else if(what=="out") {
rotate_extrude($fn=smooth_f)
polygon([
- [0,-fanduct_elevation],
+ [0,-fanduct_elevation+fanduct_blowtarget+epsilon],
[fanduct_ir+fanduct_shell+1,fanduct_h/2],
[fanduct_ir+fanduct_w/2+fanduct_shell+1,fanduct_shell],
- [0,-fanduct_elevation-.1]]);
+ [0,-fanduct_elevation+fanduct_blowtarget-epsilon]]);
}else if(what=="airguides") {
inr = fanduct_ir+fanduct_shell; our = inr+fanduct_w;
union() {
for(my=[0,1]) mirror([0,my,0]) {
guideline([
[-our,inlet_w/6],
[-inr*sin(60),inr*cos(60)]
]);
a0=30; as=15; a1=180;
for(a=[a0+as:as:a1]) {
f = as/(a1-a+as);
rotate([0,0,a]) guideline([[-inr-fanduct_w*f,0]]);
}
guideline([
[-our+fanduct_w*cos(30)*3/4,fanduct_w*sin(30)*3/4],
[-inr*cos(10),inr*sin(10)]
]);
}
}/*union*/
}/*airguides*/
}
module jets(what) {
od = fanduct_h/2+fanduct_shell;
md = fanduct_ir+fanduct_shell+fanduct_w/2;
jww = 2*md*sin(jet_angle/2);
render(convexity=8) difference() {
for(a=[0:120:359]) rotate([0,0,a]) {
if(what=="in") {
hull() {
render(convexity=4) intersection() {
translate([md-fanduct_shell-fanduct_w/2,-jww/2,0])
cube(size=[fanduct_shell+fanduct_w/2,jww,od]);
duct(what=what);
}
translate([0,0,-fanduct_elevation]) sphere(r=.5);
}
}else if(what=="out") {
hull() {
render(convexity=4) intersection() {
translate([md-fanduct_w/2-fanduct_shell,-jww/2+fanduct_shell,fanduct_shell])
cube(size=[fanduct_w/2+fanduct_shell,jww-2*fanduct_shell,od-2*fanduct_shell]);
duct(what=what);
}
translate([0,0,-fanduct_elevation]) sphere(r=.2);
}
}
}
if(what=="in") {
translate([0,0,-fanduct_elevation-2+epsilon])
cylinder(r=fanduct_ir+fanduct_shell*2+fanduct_w+1,h=fanduct_elevation+2);
translate([0,0,-hotend_clearance])
rotate([0,0,30])
cylinder(r1=hotend_clearance*2,r2=0,h=hotend_clearance*2,$fn=6);
}
}
}
if(type=="circular") circus(what);
else if(type=="3jets") jets(what);
}
// *** air intake
module intake(what) {