author | Michael Krelin <hacker@klever.net> | 2016-05-30 23:05:36 (UTC) |
---|---|---|
committer | Michael Krelin <hacker@klever.net> | 2016-05-30 23:05:36 (UTC) |
commit | c11d5b7e8f4b8f0e7a20d81dd813a21e19b705c3 (patch) (side-by-side diff) | |
tree | c361a9b9a84be5e1983404afdc98f3e77298664e | |
parent | d2f2c94ddbbf6c00b6ea89257f8f3e242f9216bd (diff) | |
download | fanductory-c11d5b7e8f4b8f0e7a20d81dd813a21e19b705c3.zip fanductory-c11d5b7e8f4b8f0e7a20d81dd813a21e19b705c3.tar.gz fanductory-c11d5b7e8f4b8f0e7a20d81dd813a21e19b705c3.tar.bz2 |
make the blow target adjustable
blow a bit below layer printed to target the neighborhood instead of
the very nozzle
-rw-r--r-- | fanduct.scad | 9 |
1 files changed, 5 insertions, 4 deletions
diff --git a/fanduct.scad b/fanduct.scad index 7fc1ff4..f4bb705 100644 --- a/fanduct.scad +++ b/fanduct.scad @@ -1,164 +1,165 @@ use <snapper.scad>; extrusion_width=.5; layer_height=.2; // print parameters epsilon=.005; // for finer cuts heater_w = 16; // heatblock width heater_l = 20; // heatblock length nozzle_offset=4.5; // nozzle offset from the edge of heatblock fanduct_elevation = 3; // fanduct elevation above nozzle tip +fanduct_blowtarget = -2; // what to blow at fanduct_h = 6; // inner height of the duct fanduct_w = 7; // inner width of the duct fanduct_shell=1.2; // shell thickness fanduct_ir = sqrt(pow(heater_w/2,2)+pow(heater_l-nozzle_offset,2))+5; // inner radius jet_angle = 60; // angular width of the jet inlet_w = 12.5; // inlet width inlet_h = 17; // inlet height inlet_l = 7; // inlet length of protrusion (or depth of intrusion:)) inlet_away = 15; // how far away inlet is hotend_clearance = 12; snapper_d = 8; snapper_overlap=0.2; // snip snap smooth_f = 120; type="3jets"; // "3jets" ; // circular|3jets module fanduct(type=type) { // *** duct is all around! module duct(what) { if(what=="in") { sh = fanduct_w+2*fanduct_shell; sv = fanduct_h+2*fanduct_shell; smax = max(sh,sv); rotate_extrude($fn=smooth_f) translate([sh/2+fanduct_ir,sv/2]) scale([sh/smax,sv/smax]) circle(d=smax,$fn=4*smax); }else if(what=="out") { sh = fanduct_w; sv = fanduct_h; smax = max(sh,sv); rotate_extrude($fn=smooth_f) translate([sh/2+fanduct_shell+fanduct_ir,sv/2+fanduct_shell]) scale([sh/smax,sv/smax]) circle(d=smax,$fn=4*smax); } } // *** bumps for easier position adjustments in line with hotend module marks(what) { if(what=="in") { for(y=[-1,1]) hull() for(z=[0,-fanduct_shell-fanduct_h/2]) translate([0,y*(fanduct_ir+fanduct_shell+fanduct_w/2),fanduct_shell*2+fanduct_h+z]) rotate([90,0,0]) { cylinder(r=fanduct_shell,h=fanduct_w,center=true,$fn=30); for(z=[-1,1]) translate([0,0,z*fanduct_w/2]) sphere(r=fanduct_shell,$fn=30); } } } // *** output module output(what,type=type) { module guideline(xyxy) { module pin(xy) { translate([xy[0],xy[1],0]) cylinder(d=2*extrusion_width,h=2*fanduct_shell+inlet_h,$fn=6); } xyxyxy=concat(xyxy,[[0,0]]); for(i=[0:1:len(xyxyxy)-2]) hull() for(j=[i,i+1]) pin(xyxyxy[j]); } module circus(what) { if(what=="in") { difference() { rotate_extrude($fn=smooth_f) polygon([ - [0,-fanduct_elevation], + [0,-fanduct_elevation+fanduct_blowtarget+epsilon], [fanduct_ir+fanduct_shell,fanduct_shell+fanduct_h/2], [fanduct_ir+fanduct_shell+fanduct_w/2,0], - [0,-fanduct_elevation-.1]]); + [0,-fanduct_elevation+fanduct_blowtarget-epsilon]]); translate([0,0,-1]) cylinder(r=hotend_clearance,h=fanduct_h+2*fanduct_shell+2,$fn=smooth_f); mirror([0,0,1]) translate([0,0,-epsilon]) cylinder(r=fanduct_ir+fanduct_shell+1,h=fanduct_elevation+.1+2); } }else if(what=="out") { rotate_extrude($fn=smooth_f) polygon([ - [0,-fanduct_elevation], + [0,-fanduct_elevation+fanduct_blowtarget+epsilon], [fanduct_ir+fanduct_shell+1,fanduct_h/2], [fanduct_ir+fanduct_w/2+fanduct_shell+1,fanduct_shell], - [0,-fanduct_elevation-.1]]); + [0,-fanduct_elevation+fanduct_blowtarget-epsilon]]); }else if(what=="airguides") { inr = fanduct_ir+fanduct_shell; our = inr+fanduct_w; union() { for(my=[0,1]) mirror([0,my,0]) { guideline([ [-our,inlet_w/6], [-inr*sin(60),inr*cos(60)] ]); a0=30; as=15; a1=180; for(a=[a0+as:as:a1]) { f = as/(a1-a+as); rotate([0,0,a]) guideline([[-inr-fanduct_w*f,0]]); } guideline([ [-our+fanduct_w*cos(30)*3/4,fanduct_w*sin(30)*3/4], [-inr*cos(10),inr*sin(10)] ]); } }/*union*/ }/*airguides*/ } module jets(what) { od = fanduct_h/2+fanduct_shell; md = fanduct_ir+fanduct_shell+fanduct_w/2; jww = 2*md*sin(jet_angle/2); render(convexity=8) difference() { for(a=[0:120:359]) rotate([0,0,a]) { if(what=="in") { hull() { render(convexity=4) intersection() { translate([md-fanduct_shell-fanduct_w/2,-jww/2,0]) cube(size=[fanduct_shell+fanduct_w/2,jww,od]); duct(what=what); } translate([0,0,-fanduct_elevation]) sphere(r=.5); } }else if(what=="out") { hull() { render(convexity=4) intersection() { translate([md-fanduct_w/2-fanduct_shell,-jww/2+fanduct_shell,fanduct_shell]) cube(size=[fanduct_w/2+fanduct_shell,jww-2*fanduct_shell,od-2*fanduct_shell]); duct(what=what); } translate([0,0,-fanduct_elevation]) sphere(r=.2); } } } if(what=="in") { translate([0,0,-fanduct_elevation-2+epsilon]) cylinder(r=fanduct_ir+fanduct_shell*2+fanduct_w+1,h=fanduct_elevation+2); translate([0,0,-hotend_clearance]) rotate([0,0,30]) cylinder(r1=hotend_clearance*2,r2=0,h=hotend_clearance*2,$fn=6); } } } if(type=="circular") circus(what); else if(type=="3jets") jets(what); } // *** air intake module intake(what) { |