-rw-r--r-- | fanduct.scad | 6 |
1 files changed, 4 insertions, 2 deletions
diff --git a/fanduct.scad b/fanduct.scad index a18ce56..132b9e8 100644 --- a/fanduct.scad +++ b/fanduct.scad @@ -1,218 +1,220 @@ use <snapper.scad>; extrusion_width=.5; layer_height=.2; // print parameters epsilon=.005; // for finer cuts type="circular"; // circular|3jets ductshape="square"; // square|round dual=true; // dual or single nozzles_apart = 18; // distance between nozzles for dual hotend space_behind_nozzle = 10; // space behind the nozzle where we're allowed to go // without the fear of hitting carriage inlet_w = 12.5; // inlet width inlet_h = 17; // inlet height inlet_short_l = 7; // inlet length of protrusion (or depth of intrusion:)) inlet_away = 15; // how far away inlet is inlet_long_l = inlet_short_l+inlet_h; function hypothenuse(a,b) = sqrt(pow(a,2)+pow(b,2)); silicone_shell = 2; -heater_clearance = max( +heater_clearance = dual + ? max(20,15.5) - 4.5 + silicone_shell + : max( hypothenuse(16/2 +silicone_shell, 20-4.5 +silicone_shell), // E3D v6 hypothenuse(11.5-4.5 +silicone_shell, 15.5 +silicone_shell) // E3D volcano -); + ); fanduct_elevation = 3; // fanduct elevation above nozzle tip fanduct_blowtarget = -2; // what to blow at fanduct_h = 6; // inner height of the duct fanduct_w = 7; // inner width of the duct fanduct_shell=1.2; // shell thickness fanduct_ir = heater_clearance+5; // inner radius jet_angle = 60-2; // angular width of the jet hotend_clearance = heater_clearance; snapper_d = 8; snapper_overlap=0.2; // snip snap smooth_f = 120; to_midduct = fanduct_ir+fanduct_shell+fanduct_w/2; dual_spots = [ [+space_behind_nozzle, -(to_midduct+nozzles_apart/2)], [- to_midduct, -(to_midduct+nozzles_apart/2)], [- to_midduct, 0] ]; module fanduct(type=type,ductshape=ductshape,dual=dual) { // *** duct is all around! module duct(what) { module single() { if(what=="in") { sh = fanduct_w+2*fanduct_shell; sv = fanduct_h+2*fanduct_shell; smax = max(sh,sv); rotate_extrude($fn=smooth_f) if(ductshape=="round") translate([sh/2+fanduct_ir,sv/2]) scale([sh/smax,sv/smax]) circle(d=smax,$fn=4*smax); else if(ductshape=="square") translate([fanduct_ir,0]) square([sh,sv]); }else if(what=="out") { sh = fanduct_w; sv = fanduct_h; smax = max(sh,sv); rotate_extrude($fn=smooth_f) if(ductshape=="round") translate([sh/2+fanduct_shell+fanduct_ir,sv/2+fanduct_shell]) scale([sh/smax,sv/smax]) circle(d=smax,$fn=4*smax); else if(ductshape=="square") translate([fanduct_ir+fanduct_shell,fanduct_shell]) union() { square([sh,sv/2]); translate([sh/2,sv/2]) scale([sh/smax,sv/smax]) circle(d=smax,$fn=36); } } } module dual() { module hulls(spots=dual_spots) { for(my=[0,1]) mirror([0,my,0]) for(pn=[0:1:len(spots)-2]) hull() { for(p=[spots[pn],spots[pn+1]]) translate(p) children(); } } if(what=="in") { hulls() cylinder(d=fanduct_w+2*fanduct_shell,h=fanduct_h+2*fanduct_shell); }else if(what=="out") { sh = fanduct_w; sv = fanduct_h; smax = max(sh,sv); translate([0,0,fanduct_shell]) hulls() { cylinder(d=fanduct_w,h=fanduct_h/2); translate([0,0,fanduct_h/2]) scale([sh/smax,sh/smax,sv/smax]) intersection() { sphere(d=smax,$fn=36); translate([0,0,-1]) cylinder(d=smax+2,h=smax+2,$fn=36); } } } } if(dual) dual(); else single(); } // *** bumps for easier position adjustments in line with hotend module marks(what) { if(what=="in") { for(y=[-1,1]) translate([0,dual?y*nozzles_apart/2:0,0]) hull() for(z=[0,-fanduct_shell-fanduct_h/2]) translate([0,y*(fanduct_ir+fanduct_shell+fanduct_w/2),fanduct_shell*2+fanduct_h+z]) rotate([90,0,0]) { cylinder(r=fanduct_shell,h=fanduct_w,center=true,$fn=30); for(z=[-1,1]) translate([0,0,z*fanduct_w/2]) sphere(r=fanduct_shell,$fn=30); } } } // *** output module output(what,type=type) { module guideline(xyxy) { module pin(xy) { translate([xy[0],xy[1],0]) cylinder(d=2*extrusion_width,h=2*fanduct_shell+inlet_h,$fn=6); } xyxyxy=concat(xyxy,[[0,dual?nozzles_apart/2:0]]); for(i=[0:1:len(xyxyxy)-2]) hull() for(j=[i,i+1]) pin(xyxyxy[j]); } module circus(what) { if(what=="in") { difference() { rotate_extrude($fn=smooth_f) polygon([ [0,-fanduct_elevation+fanduct_blowtarget+epsilon], [fanduct_ir+fanduct_shell,fanduct_shell+fanduct_h/2], [fanduct_ir+fanduct_shell+fanduct_w/2,0], [0,-fanduct_elevation+fanduct_blowtarget-epsilon]]); translate([0,0,-1]) cylinder(r=hotend_clearance,h=fanduct_h+2*fanduct_shell+2,$fn=smooth_f); mirror([0,0,1]) translate([0,0,-epsilon]) cylinder(r=fanduct_ir+2*fanduct_shell+fanduct_w+1,h=fanduct_elevation+.1+2); } }else if(what=="out") { rotate_extrude($fn=smooth_f) polygon([ [0,-fanduct_elevation+fanduct_blowtarget+epsilon], [fanduct_ir+fanduct_shell+1,fanduct_h/2], [fanduct_ir+fanduct_w/2+fanduct_shell+1,fanduct_shell], [0,-fanduct_elevation+fanduct_blowtarget-epsilon]]); }else if(what=="airguides") { inr = fanduct_ir+fanduct_shell; our = inr+fanduct_w; union() { for(my=[0,1]) mirror([0,my,0]) { guideline([ [-our,inlet_w/6], [-inr*sin(60),inr*cos(60)] ]); a0=30; as=15; a1=180; for(a=[a0+as:as:a1]) { f = as/(a1-a+as); rotate([0,0,a]) guideline([[-inr-fanduct_w*f,0]]); } guideline([ [-our+fanduct_w*cos(30)*3/4,fanduct_w*sin(30)*3/4], [-inr*cos(10),inr*sin(10)] ]); } }/*union*/ }/*airguides*/ } module jets(what) { od = fanduct_h*2/3+fanduct_shell; md = fanduct_ir+fanduct_shell+fanduct_w/2; jww = 2*md*sin(jet_angle/2); difference() { for(a=[0:120:359]) rotate([0,0,a]) { if(what=="in") { hull() { intersection() { translate([md-fanduct_w/2,-jww/2,0]) cube(size=[fanduct_shell+fanduct_w/2,jww,od]); duct(what=what); } translate([0,0,-fanduct_elevation]) sphere(r=.5); } }else if(what=="out") { hull() { intersection() { translate([md-fanduct_w/2,-jww/2+fanduct_shell,fanduct_shell]) cube(size=[fanduct_w/2,jww-2*fanduct_shell,od-2*fanduct_shell]); duct(what=what); } translate([0,0,-fanduct_elevation]) sphere(r=.2); } } } if(what=="in") { translate([0,0,-fanduct_elevation-2+epsilon]) cylinder(r=fanduct_ir+fanduct_shell*2+fanduct_w+1,h=fanduct_elevation+2); translate([0,0,-hotend_clearance]) rotate([0,0,30]) cylinder(r1=hotend_clearance*2,r2=0,h=hotend_clearance*2,$fn=6); } } } module dual(what=what) { module hulls(spots=dual_spots) { for(my=[0,1]) mirror([0,my,0]) for(pn=[0:1:len(spots)-2]) hull() { for(p=[spots[pn],spots[pn+1]]) translate(p) children(0); |