summaryrefslogtreecommitdiffabout
path: root/pwmanager/libcrypt/mpi/mpih-div.c
Unidiff
Diffstat (limited to 'pwmanager/libcrypt/mpi/mpih-div.c') (more/less context) (ignore whitespace changes)
-rw-r--r--pwmanager/libcrypt/mpi/mpih-div.c535
1 files changed, 535 insertions, 0 deletions
diff --git a/pwmanager/libcrypt/mpi/mpih-div.c b/pwmanager/libcrypt/mpi/mpih-div.c
new file mode 100644
index 0000000..e41e205
--- a/dev/null
+++ b/pwmanager/libcrypt/mpi/mpih-div.c
@@ -0,0 +1,535 @@
1/* mpih-div.c - MPI helper functions
2 * Copyright (C) 1994, 1996, 1998, 2000,
3 * 2001, 2002 Free Software Foundation, Inc.
4 *
5 * This file is part of Libgcrypt.
6 *
7 * Libgcrypt is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU Lesser General Public License as
9 * published by the Free Software Foundation; either version 2.1 of
10 * the License, or (at your option) any later version.
11 *
12 * Libgcrypt is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
20 *
21 * Note: This code is heavily based on the GNU MP Library.
22 * Actually it's the same code with only minor changes in the
23 * way the data is stored; this is to support the abstraction
24 * of an optional secure memory allocation which may be used
25 * to avoid revealing of sensitive data due to paging etc.
26 */
27
28#include <config.h>
29#include <stdio.h>
30#include <stdlib.h>
31#include "mpi-internal.h"
32#include "longlong.h"
33
34#ifndef UMUL_TIME
35#define UMUL_TIME 1
36#endif
37#ifndef UDIV_TIME
38#define UDIV_TIME UMUL_TIME
39#endif
40
41/* FIXME: We should be using invert_limb (or invert_normalized_limb)
42 * here (not udiv_qrnnd).
43 */
44
45mpi_limb_t
46_gcry_mpih_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
47 mpi_limb_t divisor_limb)
48{
49 mpi_size_t i;
50 mpi_limb_t n1, n0, r;
51 int dummy;
52
53 /* Botch: Should this be handled at all? Rely on callers?*/
54 if( !dividend_size )
55 return 0;
56
57 /* If multiplication is much faster than division, and the
58 * dividend is large, pre-invert the divisor, and use
59 * only multiplications in the inner loop.
60 *
61 * This test should be read:
62 * Does it ever help to use udiv_qrnnd_preinv?
63 * && Does what we save compensate for the inversion overhead?
64 */
65 if( UDIV_TIME > (2 * UMUL_TIME + 6)
66 && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME ) {
67 int normalization_steps;
68
69 count_leading_zeros( normalization_steps, divisor_limb );
70 if( normalization_steps ) {
71 mpi_limb_t divisor_limb_inverted;
72
73 divisor_limb <<= normalization_steps;
74
75 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
76 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
77 * most significant bit (with weight 2**N) implicit.
78 *
79 * Special case for DIVISOR_LIMB == 100...000.
80 */
81 if( !(divisor_limb << 1) )
82 divisor_limb_inverted = ~(mpi_limb_t)0;
83 else
84 udiv_qrnnd(divisor_limb_inverted, dummy,
85 -divisor_limb, 0, divisor_limb);
86
87 n1 = dividend_ptr[dividend_size - 1];
88 r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
89
90 /* Possible optimization:
91 * if (r == 0
92 * && divisor_limb > ((n1 << normalization_steps)
93 * | (dividend_ptr[dividend_size - 2] >> ...)))
94 * ...one division less...
95 */
96 for( i = dividend_size - 2; i >= 0; i--) {
97 n0 = dividend_ptr[i];
98 UDIV_QRNND_PREINV(dummy, r, r,
99 ((n1 << normalization_steps)
100 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
101 divisor_limb, divisor_limb_inverted);
102 n1 = n0;
103 }
104 UDIV_QRNND_PREINV(dummy, r, r,
105 n1 << normalization_steps,
106 divisor_limb, divisor_limb_inverted);
107 return r >> normalization_steps;
108 }
109 else {
110 mpi_limb_t divisor_limb_inverted;
111
112 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
113 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
114 * most significant bit (with weight 2**N) implicit.
115 *
116 * Special case for DIVISOR_LIMB == 100...000.
117 */
118 if( !(divisor_limb << 1) )
119 divisor_limb_inverted = ~(mpi_limb_t)0;
120 else
121 udiv_qrnnd(divisor_limb_inverted, dummy,
122 -divisor_limb, 0, divisor_limb);
123
124 i = dividend_size - 1;
125 r = dividend_ptr[i];
126
127 if( r >= divisor_limb )
128 r = 0;
129 else
130 i--;
131
132 for( ; i >= 0; i--) {
133 n0 = dividend_ptr[i];
134 UDIV_QRNND_PREINV(dummy, r, r,
135 n0, divisor_limb, divisor_limb_inverted);
136 }
137 return r;
138 }
139 }
140 else {
141 if( UDIV_NEEDS_NORMALIZATION ) {
142 int normalization_steps;
143
144 count_leading_zeros(normalization_steps, divisor_limb);
145 if( normalization_steps ) {
146 divisor_limb <<= normalization_steps;
147
148 n1 = dividend_ptr[dividend_size - 1];
149 r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
150
151 /* Possible optimization:
152 * if (r == 0
153 * && divisor_limb > ((n1 << normalization_steps)
154 * | (dividend_ptr[dividend_size - 2] >> ...)))
155 * ...one division less...
156 */
157 for(i = dividend_size - 2; i >= 0; i--) {
158 n0 = dividend_ptr[i];
159 udiv_qrnnd (dummy, r, r,
160 ((n1 << normalization_steps)
161 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
162 divisor_limb);
163 n1 = n0;
164 }
165 udiv_qrnnd (dummy, r, r,
166 n1 << normalization_steps,
167 divisor_limb);
168 return r >> normalization_steps;
169 }
170 }
171 /* No normalization needed, either because udiv_qrnnd doesn't require
172 * it, or because DIVISOR_LIMB is already normalized. */
173 i = dividend_size - 1;
174 r = dividend_ptr[i];
175
176 if(r >= divisor_limb)
177 r = 0;
178 else
179 i--;
180
181 for(; i >= 0; i--) {
182 n0 = dividend_ptr[i];
183 udiv_qrnnd (dummy, r, r, n0, divisor_limb);
184 }
185 return r;
186 }
187}
188
189/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
190 * the NSIZE-DSIZE least significant quotient limbs at QP
191 * and the DSIZE long remainder at NP.If QEXTRA_LIMBS is
192 * non-zero, generate that many fraction bits and append them after the
193 * other quotient limbs.
194 * Return the most significant limb of the quotient, this is always 0 or 1.
195 *
196 * Preconditions:
197 * 0. NSIZE >= DSIZE.
198 * 1. The most significant bit of the divisor must be set.
199 * 2. QP must either not overlap with the input operands at all, or
200 * QP + DSIZE >= NP must hold true.(This means that it's
201 * possible to put the quotient in the high part of NUM, right after the
202 * remainder in NUM.
203 * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
204 */
205
206mpi_limb_t
207_gcry_mpih_divrem( mpi_ptr_t qp, mpi_size_t qextra_limbs,
208 mpi_ptr_t np, mpi_size_t nsize,
209 mpi_ptr_t dp, mpi_size_t dsize)
210{
211 mpi_limb_t most_significant_q_limb = 0;
212
213 switch(dsize) {
214 case 0:
215 /* We are asked to divide by zero, so go ahead and do it! (To make
216 the compiler not remove this statement, return the value.) */
217 return 1 / dsize;
218
219 case 1:
220 {
221 mpi_size_t i;
222 mpi_limb_t n1;
223 mpi_limb_t d;
224
225 d = dp[0];
226 n1 = np[nsize - 1];
227
228 if( n1 >= d ) {
229 n1 -= d;
230 most_significant_q_limb = 1;
231 }
232
233 qp += qextra_limbs;
234 for( i = nsize - 2; i >= 0; i--)
235 udiv_qrnnd( qp[i], n1, n1, np[i], d );
236 qp -= qextra_limbs;
237
238 for( i = qextra_limbs - 1; i >= 0; i-- )
239 udiv_qrnnd (qp[i], n1, n1, 0, d);
240
241 np[0] = n1;
242 }
243 break;
244
245 case 2:
246 {
247 mpi_size_t i;
248 mpi_limb_t n1, n0, n2;
249 mpi_limb_t d1, d0;
250
251 np += nsize - 2;
252 d1 = dp[1];
253 d0 = dp[0];
254 n1 = np[1];
255 n0 = np[0];
256
257 if( n1 >= d1 && (n1 > d1 || n0 >= d0) ) {
258 sub_ddmmss (n1, n0, n1, n0, d1, d0);
259 most_significant_q_limb = 1;
260 }
261
262 for( i = qextra_limbs + nsize - 2 - 1; i >= 0; i-- ) {
263 mpi_limb_t q;
264 mpi_limb_t r;
265
266 if( i >= qextra_limbs )
267 np--;
268 else
269 np[0] = 0;
270
271 if( n1 == d1 ) {
272 /* Q should be either 111..111 or 111..110. Need special
273 * treatment of this rare case as normal division would
274 * give overflow. */
275 q = ~(mpi_limb_t)0;
276
277 r = n0 + d1;
278 if( r < d1 ) { /* Carry in the addition? */
279 add_ssaaaa( n1, n0, r - d0, np[0], 0, d0 );
280 qp[i] = q;
281 continue;
282 }
283 n1 = d0 - (d0 != 0?1:0);
284 n0 = -d0;
285 }
286 else {
287 udiv_qrnnd (q, r, n1, n0, d1);
288 umul_ppmm (n1, n0, d0, q);
289 }
290
291 n2 = np[0];
292 q_test:
293 if( n1 > r || (n1 == r && n0 > n2) ) {
294 /* The estimated Q was too large. */
295 q--;
296 sub_ddmmss (n1, n0, n1, n0, 0, d0);
297 r += d1;
298 if( r >= d1 ) /* If not carry, test Q again. */
299 goto q_test;
300 }
301
302 qp[i] = q;
303 sub_ddmmss (n1, n0, r, n2, n1, n0);
304 }
305 np[1] = n1;
306 np[0] = n0;
307 }
308 break;
309
310 default:
311 {
312 mpi_size_t i;
313 mpi_limb_t dX, d1, n0;
314
315 np += nsize - dsize;
316 dX = dp[dsize - 1];
317 d1 = dp[dsize - 2];
318 n0 = np[dsize - 1];
319
320 if( n0 >= dX ) {
321 if(n0 > dX || _gcry_mpih_cmp(np, dp, dsize - 1) >= 0 ) {
322 _gcry_mpih_sub_n(np, np, dp, dsize);
323 n0 = np[dsize - 1];
324 most_significant_q_limb = 1;
325 }
326 }
327
328 for( i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
329 mpi_limb_t q;
330 mpi_limb_t n1, n2;
331 mpi_limb_t cy_limb;
332
333 if( i >= qextra_limbs ) {
334 np--;
335 n2 = np[dsize];
336 }
337 else {
338 n2 = np[dsize - 1];
339 MPN_COPY_DECR (np + 1, np, dsize - 1);
340 np[0] = 0;
341 }
342
343 if( n0 == dX ) {
344 /* This might over-estimate q, but it's probably not worth
345 * the extra code here to find out. */
346 q = ~(mpi_limb_t)0;
347 }
348 else {
349 mpi_limb_t r;
350
351 udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
352 umul_ppmm(n1, n0, d1, q);
353
354 while( n1 > r || (n1 == r && n0 > np[dsize - 2])) {
355 q--;
356 r += dX;
357 if( r < dX ) /* I.e. "carry in previous addition?" */
358 break;
359 n1 -= n0 < d1;
360 n0 -= d1;
361 }
362 }
363
364 /* Possible optimization: We already have (q * n0) and (1 * n1)
365 * after the calculation of q.Taking advantage of that, we
366 * could make this loop make two iterations less. */
367 cy_limb = _gcry_mpih_submul_1(np, dp, dsize, q);
368
369 if( n2 != cy_limb ) {
370 _gcry_mpih_add_n(np, np, dp, dsize);
371 q--;
372 }
373
374 qp[i] = q;
375 n0 = np[dsize - 1];
376 }
377 }
378 }
379
380 return most_significant_q_limb;
381}
382
383
384/****************
385 * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
386 * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
387 * Return the single-limb remainder.
388 * There are no constraints on the value of the divisor.
389 *
390 * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
391 */
392
393mpi_limb_t
394_gcry_mpih_divmod_1( mpi_ptr_t quot_ptr,
395 mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
396 mpi_limb_t divisor_limb)
397{
398 mpi_size_t i;
399 mpi_limb_t n1, n0, r;
400 int dummy;
401
402 if( !dividend_size )
403 return 0;
404
405 /* If multiplication is much faster than division, and the
406 * dividend is large, pre-invert the divisor, and use
407 * only multiplications in the inner loop.
408 *
409 * This test should be read:
410 * Does it ever help to use udiv_qrnnd_preinv?
411 * && Does what we save compensate for the inversion overhead?
412 */
413 if( UDIV_TIME > (2 * UMUL_TIME + 6)
414 && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME ) {
415 int normalization_steps;
416
417 count_leading_zeros( normalization_steps, divisor_limb );
418 if( normalization_steps ) {
419 mpi_limb_t divisor_limb_inverted;
420
421 divisor_limb <<= normalization_steps;
422
423 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
424 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
425 * most significant bit (with weight 2**N) implicit.
426 */
427 /* Special case for DIVISOR_LIMB == 100...000. */
428 if( !(divisor_limb << 1) )
429 divisor_limb_inverted = ~(mpi_limb_t)0;
430 else
431 udiv_qrnnd(divisor_limb_inverted, dummy,
432 -divisor_limb, 0, divisor_limb);
433
434 n1 = dividend_ptr[dividend_size - 1];
435 r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
436
437 /* Possible optimization:
438 * if (r == 0
439 * && divisor_limb > ((n1 << normalization_steps)
440 * | (dividend_ptr[dividend_size - 2] >> ...)))
441 * ...one division less...
442 */
443 for( i = dividend_size - 2; i >= 0; i--) {
444 n0 = dividend_ptr[i];
445 UDIV_QRNND_PREINV( quot_ptr[i + 1], r, r,
446 ((n1 << normalization_steps)
447 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
448 divisor_limb, divisor_limb_inverted);
449 n1 = n0;
450 }
451 UDIV_QRNND_PREINV( quot_ptr[0], r, r,
452 n1 << normalization_steps,
453 divisor_limb, divisor_limb_inverted);
454 return r >> normalization_steps;
455 }
456 else {
457 mpi_limb_t divisor_limb_inverted;
458
459 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
460 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
461 * most significant bit (with weight 2**N) implicit.
462 */
463 /* Special case for DIVISOR_LIMB == 100...000. */
464 if( !(divisor_limb << 1) )
465 divisor_limb_inverted = ~(mpi_limb_t) 0;
466 else
467 udiv_qrnnd(divisor_limb_inverted, dummy,
468 -divisor_limb, 0, divisor_limb);
469
470 i = dividend_size - 1;
471 r = dividend_ptr[i];
472
473 if( r >= divisor_limb )
474 r = 0;
475 else
476 quot_ptr[i--] = 0;
477
478 for( ; i >= 0; i-- ) {
479 n0 = dividend_ptr[i];
480 UDIV_QRNND_PREINV( quot_ptr[i], r, r,
481 n0, divisor_limb, divisor_limb_inverted);
482 }
483 return r;
484 }
485 }
486 else {
487 if(UDIV_NEEDS_NORMALIZATION) {
488 int normalization_steps;
489
490 count_leading_zeros (normalization_steps, divisor_limb);
491 if( normalization_steps ) {
492 divisor_limb <<= normalization_steps;
493
494 n1 = dividend_ptr[dividend_size - 1];
495 r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
496
497 /* Possible optimization:
498 * if (r == 0
499 * && divisor_limb > ((n1 << normalization_steps)
500 * | (dividend_ptr[dividend_size - 2] >> ...)))
501 * ...one division less...
502 */
503 for( i = dividend_size - 2; i >= 0; i--) {
504 n0 = dividend_ptr[i];
505 udiv_qrnnd (quot_ptr[i + 1], r, r,
506 ((n1 << normalization_steps)
507 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
508 divisor_limb);
509 n1 = n0;
510 }
511 udiv_qrnnd (quot_ptr[0], r, r,
512 n1 << normalization_steps,
513 divisor_limb);
514 return r >> normalization_steps;
515 }
516 }
517 /* No normalization needed, either because udiv_qrnnd doesn't require
518 * it, or because DIVISOR_LIMB is already normalized. */
519 i = dividend_size - 1;
520 r = dividend_ptr[i];
521
522 if(r >= divisor_limb)
523 r = 0;
524 else
525 quot_ptr[i--] = 0;
526
527 for(; i >= 0; i--) {
528 n0 = dividend_ptr[i];
529 udiv_qrnnd( quot_ptr[i], r, r, n0, divisor_limb );
530 }
531 return r;
532 }
533}
534
535