author | erik <erik> | 2007-01-26 20:24:07 (UTC) |
---|---|---|
committer | erik <erik> | 2007-01-26 20:24:07 (UTC) |
commit | cc5b326a212414a612838b0041e6077477ebbc70 (patch) (side-by-side diff) | |
tree | fd69c302a511c3bc715ff0e160181b9ad1cbf82d | |
parent | 53d630c9c4813142ee13e6843c30476a5db26e78 (diff) | |
download | opie-cc5b326a212414a612838b0041e6077477ebbc70.zip opie-cc5b326a212414a612838b0041e6077477ebbc70.tar.gz opie-cc5b326a212414a612838b0041e6077477ebbc70.tar.bz2 |
A couple of places where a string is overrun. This fixes both of them.
-rw-r--r-- | noncore/apps/opie-reader/chm_lib.c | 5 | ||||
-rw-r--r-- | noncore/settings/sysinfo/contrib/dhry.c | 4 |
2 files changed, 5 insertions, 4 deletions
diff --git a/noncore/apps/opie-reader/chm_lib.c b/noncore/apps/opie-reader/chm_lib.c index ecf8278..7acd1d2 100644 --- a/noncore/apps/opie-reader/chm_lib.c +++ b/noncore/apps/opie-reader/chm_lib.c @@ -579,1298 +579,1299 @@ static int _unmarshal_lzxc_control_data(unsigned char **pData, if (*pDataLen >= _CHM_LZXC_V2_LEN) _unmarshal_uint32 (pData, pDataLen, &dest->unknown_18); else dest->unknown_18 = 0; if (dest->version == 2) { dest->resetInterval *= 0x8000; dest->windowSize *= 0x8000; dest->unknown_14 *= 0x8000; } if (dest->windowSize == 0 || dest->resetInterval == 0) return 0; /* for now, only support resetInterval a multiple of windowSize/2 */ if (dest->windowSize == 1) return 0; if ((dest->resetInterval % (dest->windowSize/2)) != 0) return 0; /* check structure */ if (memcmp(dest->signature, "LZXC", 4) != 0) return 0; return 1; } /* the structure used for chm file handles */ struct chmFile { #ifdef WIN32 HANDLE fd; #else int fd; #endif #ifdef CHM_MT #ifdef WIN32 CRITICAL_SECTION mutex; CRITICAL_SECTION lzx_mutex; CRITICAL_SECTION cache_mutex; #else pthread_mutex_t mutex; pthread_mutex_t lzx_mutex; pthread_mutex_t cache_mutex; #endif #endif UInt64 dir_offset; UInt64 dir_len; UInt64 data_offset; Int32 index_root; Int32 index_head; UInt32 block_len; UInt64 span; struct chmUnitInfo rt_unit; struct chmUnitInfo cn_unit; struct chmLzxcResetTable reset_table; /* LZX control data */ UInt32 window_size; UInt32 reset_interval; UInt32 reset_blkcount; /* decompressor state */ struct LZXstate *lzx_state; int lzx_last_block; /* cache for decompressed blocks */ UChar **cache_blocks; Int64 *cache_block_indices; Int32 cache_num_blocks; }; /* * utility functions local to this module */ /* utility function to handle differences between {pread,read}(64)? */ static Int64 _chm_fetch_bytes(struct chmFile *h, UChar *buf, UInt64 os, Int64 len) { Int64 readLen=0, oldOs=0; if (h->fd == CHM_NULL_FD) return readLen; CHM_ACQUIRE_LOCK(h->mutex); #ifdef CHM_USE_WIN32IO /* NOTE: this might be better done with CreateFileMapping, et cetera... */ { DWORD origOffsetLo=0, origOffsetHi=0; DWORD offsetLo, offsetHi; DWORD actualLen=0; /* awkward Win32 Seek/Tell */ offsetLo = (unsigned long)(os & 0xffffffffL); offsetHi = (unsigned long)((os >> 32) & 0xffffffffL); origOffsetLo = SetFilePointer(h->fd, 0, &origOffsetHi, FILE_CURRENT); offsetLo = SetFilePointer(h->fd, offsetLo, &offsetHi, FILE_BEGIN); /* read the data */ if (ReadFile(h->fd, buf, (DWORD)len, &actualLen, NULL) == TRUE) readLen = actualLen; else readLen = 0; /* restore original position */ SetFilePointer(h->fd, origOffsetLo, &origOffsetHi, FILE_BEGIN); } #else #ifdef CHM_USE_PREAD #ifdef CHM_USE_IO64 readLen = pread64(h->fd, buf, (long)len, os); #else readLen = pread(h->fd, buf, (long)len, (unsigned long)os); #endif #else #ifdef CHM_USE_IO64 oldOs = lseek64(h->fd, 0, SEEK_CUR); lseek64(h->fd, os, SEEK_SET); readLen = read(h->fd, buf, len); lseek64(h->fd, oldOs, SEEK_SET); #else oldOs = lseek(h->fd, 0, SEEK_CUR); lseek(h->fd, (long)os, SEEK_SET); readLen = read(h->fd, buf, len); lseek(h->fd, (long)oldOs, SEEK_SET); #endif #endif #endif CHM_RELEASE_LOCK(h->mutex); return readLen; } /* open an ITS archive */ struct chmFile *chm_open(const char *filename) { unsigned char sbuffer[256]; unsigned long sremain; unsigned char *sbufpos; struct chmFile *newHandle=NULL; struct chmItsfHeader itsfHeader; struct chmItspHeader itspHeader; struct chmUnitInfo uiSpan; struct chmUnitInfo uiLzxc; struct chmLzxcControlData ctlData; /* allocate handle */ newHandle = (struct chmFile *)malloc(sizeof(struct chmFile)); newHandle->fd = CHM_NULL_FD; newHandle->lzx_state = NULL; newHandle->cache_blocks = NULL; newHandle->cache_block_indices = NULL; newHandle->cache_num_blocks = 0; /* open file */ #ifdef WIN32 if ((newHandle->fd=CreateFileA(filename, GENERIC_READ, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL)) == CHM_NULL_FD) { free(newHandle); return NULL; } #else if ((newHandle->fd=open(filename, O_RDONLY)) == CHM_NULL_FD) { free(newHandle); return NULL; } #endif /* initialize mutexes, if needed */ #ifdef CHM_MT #ifdef WIN32 InitializeCriticalSection(&newHandle->mutex); InitializeCriticalSection(&newHandle->lzx_mutex); InitializeCriticalSection(&newHandle->cache_mutex); #else pthread_mutex_init(&newHandle->mutex, NULL); pthread_mutex_init(&newHandle->lzx_mutex, NULL); pthread_mutex_init(&newHandle->cache_mutex, NULL); #endif #endif /* read and verify header */ sremain = _CHM_ITSF_V3_LEN; sbufpos = sbuffer; if (_chm_fetch_bytes(newHandle, sbuffer, (UInt64)0, sremain) != sremain || !_unmarshal_itsf_header(&sbufpos, &sremain, &itsfHeader)) { chm_close(newHandle); return NULL; } /* stash important values from header */ newHandle->dir_offset = itsfHeader.dir_offset; newHandle->dir_len = itsfHeader.dir_len; newHandle->data_offset = itsfHeader.data_offset; /* now, read and verify the directory header chunk */ sremain = _CHM_ITSP_V1_LEN; sbufpos = sbuffer; if (_chm_fetch_bytes(newHandle, sbuffer, (UInt64)itsfHeader.dir_offset, sremain) != sremain || !_unmarshal_itsp_header(&sbufpos, &sremain, &itspHeader)) { chm_close(newHandle); return NULL; } /* grab essential information from ITSP header */ newHandle->dir_offset += itspHeader.header_len; newHandle->dir_len -= itspHeader.header_len; newHandle->index_root = itspHeader.index_root; newHandle->index_head = itspHeader.index_head; newHandle->block_len = itspHeader.block_len; /* if the index root is -1, this means we don't have any PMGI blocks. * as a result, we must use the sole PMGL block as the index root */ if (newHandle->index_root == -1) newHandle->index_root = newHandle->index_head; /* prefetch most commonly needed unit infos */ if (CHM_RESOLVE_SUCCESS != chm_resolve_object(newHandle, _CHMU_SPANINFO, &uiSpan) || uiSpan.space == CHM_COMPRESSED || CHM_RESOLVE_SUCCESS != chm_resolve_object(newHandle, _CHMU_RESET_TABLE, &newHandle->rt_unit) || newHandle->rt_unit.space == CHM_COMPRESSED || CHM_RESOLVE_SUCCESS != chm_resolve_object(newHandle, _CHMU_CONTENT, &newHandle->cn_unit) || newHandle->cn_unit.space == CHM_COMPRESSED || CHM_RESOLVE_SUCCESS != chm_resolve_object(newHandle, _CHMU_LZXC_CONTROLDATA, &uiLzxc) || uiLzxc.space == CHM_COMPRESSED) { chm_close(newHandle); return NULL; } /* try to read span */ /* N.B.: we've already checked that uiSpan is in the uncompressed section, * so this should not require attempting to decompress, which may * rely on having a valid "span" */ sremain = 8; sbufpos = sbuffer; if (chm_retrieve_object(newHandle, &uiSpan, sbuffer, 0, sremain) != sremain || !_unmarshal_uint64(&sbufpos, &sremain, &newHandle->span)) { chm_close(newHandle); return NULL; } /* read reset table info */ sremain = _CHM_LZXC_RESETTABLE_V1_LEN; sbufpos = sbuffer; if (chm_retrieve_object(newHandle, &newHandle->rt_unit, sbuffer, 0, sremain) != sremain || !_unmarshal_lzxc_reset_table(&sbufpos, &sremain, &newHandle->reset_table)) { chm_close(newHandle); return NULL; } /* read control data */ sremain = (unsigned long)uiLzxc.length; sbufpos = sbuffer; if (chm_retrieve_object(newHandle, &uiLzxc, sbuffer, 0, sremain) != sremain || !_unmarshal_lzxc_control_data(&sbufpos, &sremain, &ctlData)) { chm_close(newHandle); return NULL; } newHandle->window_size = ctlData.windowSize; newHandle->reset_interval = ctlData.resetInterval; newHandle->reset_blkcount = newHandle->reset_interval / (newHandle->window_size / 2); /* initialize cache */ chm_set_param(newHandle, CHM_PARAM_MAX_BLOCKS_CACHED, CHM_MAX_BLOCKS_CACHED); return newHandle; } /* close an ITS archive */ void chm_close(struct chmFile *h) { if (h != NULL) { if (h->fd != CHM_NULL_FD) CHM_CLOSE_FILE(h->fd); h->fd = CHM_NULL_FD; #ifdef CHM_MT #ifdef WIN32 DeleteCriticalSection(&h->mutex); DeleteCriticalSection(&h->lzx_mutex); DeleteCriticalSection(&h->cache_mutex); #else pthread_mutex_destroy(&h->mutex); pthread_mutex_destroy(&h->lzx_mutex); pthread_mutex_destroy(&h->cache_mutex); #endif #endif if (h->lzx_state) LZXteardown(h->lzx_state); h->lzx_state = NULL; if (h->cache_blocks) { int i; for (i=0; i<h->cache_num_blocks; i++) { if (h->cache_blocks[i]) free(h->cache_blocks[i]); } free(h->cache_blocks); h->cache_blocks = NULL; } if (h->cache_block_indices) free(h->cache_block_indices); h->cache_block_indices = NULL; free(h); } } /* * set a parameter on the file handle. * valid parameter types: * CHM_PARAM_MAX_BLOCKS_CACHED: * how many decompressed blocks should be cached? A simple * caching scheme is used, wherein the index of the block is * used as a hash value, and hash collision results in the * invalidation of the previously cached block. */ void chm_set_param(struct chmFile *h, int paramType, int paramVal) { switch (paramType) { case CHM_PARAM_MAX_BLOCKS_CACHED: CHM_ACQUIRE_LOCK(h->cache_mutex); if (paramVal != h->cache_num_blocks) { UChar **newBlocks; UInt64 *newIndices; int i; /* allocate new cached blocks */ newBlocks = (UChar **)malloc(paramVal * sizeof (UChar *)); newIndices = (UInt64 *)malloc(paramVal * sizeof (UInt64)); for (i=0; i<paramVal; i++) { newBlocks[i] = NULL; newIndices[i] = 0; } /* re-distribute old cached blocks */ if (h->cache_blocks) { for (i=0; i<h->cache_num_blocks; i++) { int newSlot = (int)(h->cache_block_indices[i] % paramVal); if (h->cache_blocks[i]) { /* in case of collision, destroy newcomer */ if (newBlocks[newSlot]) { free(h->cache_blocks[i]); h->cache_blocks[i] = NULL; } else { newBlocks[newSlot] = h->cache_blocks[i]; newIndices[newSlot] = h->cache_block_indices[i]; } } } free(h->cache_blocks); free(h->cache_block_indices); } /* now, set new values */ h->cache_blocks = newBlocks; h->cache_block_indices = newIndices; h->cache_num_blocks = paramVal; } CHM_RELEASE_LOCK(h->cache_mutex); break; default: break; } } /* * helper methods for chm_resolve_object */ /* skip a compressed dword */ static void _chm_skip_cword(UChar **pEntry) { while (*(*pEntry)++ >= 0x80) ; } /* skip the data from a PMGL entry */ static void _chm_skip_PMGL_entry_data(UChar **pEntry) { _chm_skip_cword(pEntry); _chm_skip_cword(pEntry); _chm_skip_cword(pEntry); } /* parse a compressed dword */ static UInt64 _chm_parse_cword(UChar **pEntry) { UInt64 accum = 0; UChar temp; while ((temp=*(*pEntry)++) >= 0x80) { accum <<= 7; accum += temp & 0x7f; } return (accum << 7) + temp; } /* parse a utf-8 string into an ASCII char buffer */ static int _chm_parse_UTF8(UChar **pEntry, UInt64 count, char *path) { /* XXX: implement UTF-8 support, including a real mapping onto * ISO-8859-1? probably there is a library to do this? As is * immediately apparent from the below code, I'm only handling files * in which none of the strings contain UTF-8 multi-byte characters. */ while (count != 0) { if (*(*pEntry) > 0x7f) return 0; *path++ = (char)(*(*pEntry)++); --count; } *path = '\0'; return 1; } /* parse a PMGL entry into a chmUnitInfo struct; return 1 on success. */ static int _chm_parse_PMGL_entry(UChar **pEntry, struct chmUnitInfo *ui) { UInt64 strLen; /* parse str len */ strLen = _chm_parse_cword(pEntry); if (strLen > CHM_MAX_PATHLEN) return 0; /* parse path */ if (! _chm_parse_UTF8(pEntry, strLen, ui->path)) return 0; /* parse info */ ui->space = (int)_chm_parse_cword(pEntry); ui->start = _chm_parse_cword(pEntry); ui->length = _chm_parse_cword(pEntry); return 1; } /* find an exact entry in PMGL; return NULL if we fail */ static UChar *_chm_find_in_PMGL(UChar *page_buf, UInt32 block_len, const char *objPath) { /* XXX: modify this to do a binary search using the nice index structure * that is provided for us. */ struct chmPmglHeader header; UInt32 hremain; UChar *end; UChar *cur; UChar *temp; UInt64 strLen; char buffer[CHM_MAX_PATHLEN+1]; /* figure out where to start and end */ cur = page_buf; hremain = _CHM_PMGL_LEN; if (! _unmarshal_pmgl_header(&cur, &hremain, &header)) return NULL; end = page_buf + block_len - (header.free_space); /* now, scan progressively */ while (cur < end) { /* grab the name */ temp = cur; strLen = _chm_parse_cword(&cur); if (! _chm_parse_UTF8(&cur, strLen, buffer)) return NULL; /* check if it is the right name */ #ifdef WIN32 if (! stricmp(buffer, objPath)) return temp; #else if (! strcasecmp(buffer, objPath)) return temp; #endif _chm_skip_PMGL_entry_data(&cur); } return NULL; } /* find which block should be searched next for the entry; -1 if no block */ static Int32 _chm_find_in_PMGI(UChar *page_buf, UInt32 block_len, const char *objPath) { /* XXX: modify this to do a binary search using the nice index structure * that is provided for us */ struct chmPmgiHeader header; UInt32 hremain; int page=-1; UChar *end; UChar *cur; UInt64 strLen; char buffer[CHM_MAX_PATHLEN+1]; /* figure out where to start and end */ cur = page_buf; hremain = _CHM_PMGI_LEN; if (! _unmarshal_pmgi_header(&cur, &hremain, &header)) return -1; end = page_buf + block_len - (header.free_space); /* now, scan progressively */ while (cur < end) { /* grab the name */ strLen = _chm_parse_cword(&cur); if (! _chm_parse_UTF8(&cur, strLen, buffer)) return -1; /* check if it is the right name */ #ifdef WIN32 if (stricmp(buffer, objPath) > 0) return page; #else if (strcasecmp(buffer, objPath) > 0) return page; #endif /* load next value for path */ page = (int)_chm_parse_cword(&cur); } return page; } /* resolve a particular object from the archive */ int chm_resolve_object(struct chmFile *h, const char *objPath, struct chmUnitInfo *ui) { /* * XXX: implement caching scheme for dir pages */ Int32 curPage; /* buffer to hold whatever page we're looking at */ #ifdef WIN32 UChar *page_buf = alloca(h->block_len); #else UChar page_buf[h->block_len]; #endif /* starting page */ curPage = h->index_root; /* until we have either returned or given up */ while (curPage != -1) { /* try to fetch the index page */ if (_chm_fetch_bytes(h, page_buf, (UInt64)h->dir_offset + (UInt64)curPage*h->block_len, h->block_len) != h->block_len) return CHM_RESOLVE_FAILURE; /* now, if it is a leaf node: */ if (memcmp(page_buf, _chm_pmgl_marker, 4) == 0) { /* scan block */ UChar *pEntry = _chm_find_in_PMGL(page_buf, h->block_len, objPath); if (pEntry == NULL) return CHM_RESOLVE_FAILURE; /* parse entry and return */ _chm_parse_PMGL_entry(&pEntry, ui); return CHM_RESOLVE_SUCCESS; } /* else, if it is a branch node: */ else if (memcmp(page_buf, _chm_pmgi_marker, 4) == 0) curPage = _chm_find_in_PMGI(page_buf, h->block_len, objPath); /* else, we are confused. give up. */ else return CHM_RESOLVE_FAILURE; } /* didn't find anything. fail. */ return CHM_RESOLVE_FAILURE; } /* * utility methods for dealing with compressed data */ /* get the bounds of a compressed block. return 0 on failure */ static int _chm_get_cmpblock_bounds(struct chmFile *h, UInt64 block, UInt64 *start, Int64 *len) { UChar buffer[8], *dummy; UInt32 remain; /* for all but the last block, use the reset table */ if (block < h->reset_table.block_count-1) { /* unpack the start address */ dummy = buffer; remain = 8; if (_chm_fetch_bytes(h, buffer, (UInt64)h->data_offset + (UInt64)h->rt_unit.start + (UInt64)h->reset_table.table_offset + (UInt64)block*8, remain) != remain || !_unmarshal_uint64(&dummy, &remain, start)) return 0; /* unpack the end address */ dummy = buffer; remain = 8; if (_chm_fetch_bytes(h, buffer, (UInt64)h->data_offset + (UInt64)h->rt_unit.start + (UInt64)h->reset_table.table_offset + (UInt64)block*8 + 8, remain) != remain || !_unmarshal_int64(&dummy, &remain, len)) return 0; } /* for the last block, use the span in addition to the reset table */ else { /* unpack the start address */ dummy = buffer; remain = 8; if (_chm_fetch_bytes(h, buffer, (UInt64)h->data_offset + (UInt64)h->rt_unit.start + (UInt64)h->reset_table.table_offset + (UInt64)block*8, remain) != remain || !_unmarshal_uint64(&dummy, &remain, start)) return 0; *len = h->reset_table.compressed_len; } /* compute the length and absolute start address */ *len -= *start; *start += h->data_offset + h->cn_unit.start; return 1; } /* decompress the block. must have lzx_mutex. */ static Int64 _chm_decompress_block(struct chmFile *h, UInt64 block, UChar **ubuffer) { #ifdef WIN32 UChar *cbuffer = alloca(((unsigned int)h->reset_table.block_len + 6144)); #else UChar cbuffer[h->reset_table.block_len + 6144]; /* compressed buffer */ #endif UInt64 cmpStart; /* compressed start */ Int64 cmpLen; /* compressed len */ int indexSlot; /* cache index slot */ UChar *lbuffer; /* local buffer ptr */ UInt32 blockAlign = (UInt32)(block % h->reset_blkcount); /* reset intvl. aln. */ UInt32 i; /* local loop index */ /* check if we need previous blocks */ if (blockAlign != 0) { /* fetch all required previous blocks since last reset */ for (i = h->reset_blkcount - blockAlign; i > 0; i--) { /* check if we most recently decompressed the previous block */ if (h->lzx_last_block != block-i) { indexSlot = (int)((block-i) % h->cache_num_blocks); h->cache_block_indices[indexSlot] = block-i; if (! h->cache_blocks[indexSlot]) h->cache_blocks[indexSlot] = (UChar *)malloc( (unsigned int)(h->reset_table.block_len)); lbuffer = h->cache_blocks[indexSlot]; /* decompress the previous block */ LZXreset(h->lzx_state); if (!_chm_get_cmpblock_bounds(h, block-i, &cmpStart, &cmpLen) || _chm_fetch_bytes(h, cbuffer, cmpStart, cmpLen) != cmpLen || LZXdecompress(h->lzx_state, cbuffer, lbuffer, (int)cmpLen, (int)h->reset_table.block_len) != DECR_OK) return (Int64)0; } h->lzx_last_block = (int)(block - i); } } else LZXreset(h->lzx_state); /* allocate slot in cache */ indexSlot = (int)(block % h->cache_num_blocks); h->cache_block_indices[indexSlot] = block; if (! h->cache_blocks[indexSlot]) h->cache_blocks[indexSlot] = (UChar *)malloc( ((unsigned int)h->reset_table.block_len)); lbuffer = h->cache_blocks[indexSlot]; *ubuffer = lbuffer; /* decompress the block we actually want */ if (! _chm_get_cmpblock_bounds(h, block, &cmpStart, &cmpLen) || _chm_fetch_bytes(h, cbuffer, cmpStart, cmpLen) != cmpLen || LZXdecompress(h->lzx_state, cbuffer, lbuffer, (int)cmpLen, (int)h->reset_table.block_len) != DECR_OK) return (Int64)0; h->lzx_last_block = (int)block; /* XXX: modify LZX routines to return the length of the data they * decompressed and return that instead, for an extra sanity check. */ return h->reset_table.block_len; } /* grab a region from a compressed block */ static Int64 _chm_decompress_region(struct chmFile *h, UChar *buf, UInt64 start, Int64 len) { UInt64 nBlock, nOffset; UInt64 nLen; UInt64 gotLen; UChar *ubuffer; if (len <= 0) return (Int64)0; /* figure out what we need to read */ nBlock = start / h->reset_table.block_len; nOffset = start % h->reset_table.block_len; nLen = len; if (nLen > (h->reset_table.block_len - nOffset)) nLen = h->reset_table.block_len - nOffset; /* if block is cached, return data from it. */ CHM_ACQUIRE_LOCK(h->lzx_mutex); CHM_ACQUIRE_LOCK(h->cache_mutex); if (h->cache_block_indices[nBlock % h->cache_num_blocks] == nBlock && h->cache_blocks[nBlock % h->cache_num_blocks] != NULL) { memcpy(buf, h->cache_blocks[nBlock % h->cache_num_blocks] + nOffset, (unsigned int)nLen); CHM_RELEASE_LOCK(h->cache_mutex); CHM_RELEASE_LOCK(h->lzx_mutex); return nLen; } CHM_RELEASE_LOCK(h->cache_mutex); /* data request not satisfied, so... start up the decompressor machine */ if (! h->lzx_state) { int window_size = ffs(h->window_size) - 1; h->lzx_last_block = -1; h->lzx_state = LZXinit(window_size); } /* decompress some data */ gotLen = _chm_decompress_block(h, nBlock, &ubuffer); if (gotLen < nLen) nLen = gotLen; memcpy(buf, ubuffer+nOffset, (unsigned int)nLen); CHM_RELEASE_LOCK(h->lzx_mutex); return nLen; } /* retrieve (part of) an object */ LONGINT64 chm_retrieve_object(struct chmFile *h, struct chmUnitInfo *ui, unsigned char *buf, LONGUINT64 addr, LONGINT64 len) { /* must be valid file handle */ if (h == NULL) return (Int64)0; /* starting address must be in correct range */ if (addr < 0 || addr >= ui->length) return (Int64)0; /* clip length */ if (addr + len > ui->length) len = ui->length - addr; /* if the file is uncompressed, it's simple */ if (ui->space == CHM_UNCOMPRESSED) { /* read data */ return _chm_fetch_bytes(h, buf, (UInt64)h->data_offset + (UInt64)ui->start + (UInt64)addr, len); } /* else if the file is compressed, it's a little trickier */ else /* ui->space == CHM_COMPRESSED */ { Int64 swath=0, total=0; do { /* swill another mouthful */ swath = _chm_decompress_region(h, buf, ui->start + addr, len); /* if we didn't get any... */ if (swath == 0) return total; /* update stats */ total += swath; len -= swath; addr += swath; buf += swath; } while (len != 0); return total; } } /* enumerate the objects in the .chm archive */ int chm_enumerate(struct chmFile *h, int what, CHM_ENUMERATOR e, void *context) { Int32 curPage; /* buffer to hold whatever page we're looking at */ #ifdef WIN32 UChar *page_buf = alloca((unsigned int)h->block_len); #else UChar page_buf[h->block_len]; #endif struct chmPmglHeader header; UChar *end; UChar *cur; unsigned long lenRemain; /* the current ui */ struct chmUnitInfo ui; int flag; /* starting page */ curPage = h->index_head; /* until we have either returned or given up */ while (curPage != -1) { /* try to fetch the index page */ if (_chm_fetch_bytes(h, page_buf, (UInt64)h->dir_offset + (UInt64)curPage*h->block_len, h->block_len) != h->block_len) return 0; /* figure out start and end for this page */ cur = page_buf; lenRemain = _CHM_PMGL_LEN; if (! _unmarshal_pmgl_header(&cur, &lenRemain, &header)) return 0; end = page_buf + h->block_len - (header.free_space); /* loop over this page */ while (cur < end) { if (! _chm_parse_PMGL_entry(&cur, &ui)) return 0; /* check for DIRS */ if (ui.length == 0 && !(what & CHM_ENUMERATE_DIRS)) continue; /* check for FILES */ if (ui.length != 0 && !(what & CHM_ENUMERATE_FILES)) continue; /* check for NORMAL vs. META */ if (ui.path[0] == '/') { /* check for NORMAL vs. SPECIAL */ if (ui.path[1] == '#' || ui.path[1] == '$') flag = CHM_ENUMERATE_SPECIAL; else flag = CHM_ENUMERATE_NORMAL; } else flag = CHM_ENUMERATE_META; if (! (what & flag)) continue; /* call the enumerator */ { int status = (*e)(h, &ui, context); switch (status) { case CHM_ENUMERATOR_FAILURE: return 0; case CHM_ENUMERATOR_CONTINUE: break; case CHM_ENUMERATOR_SUCCESS: return 1; default: break; } } } /* advance to next page */ curPage = header.block_next; } return 1; } int chm_enumerate_dir(struct chmFile *h, const char *prefix, int what, CHM_ENUMERATOR e, void *context) { /* * XXX: do this efficiently (i.e. using the tree index) */ Int32 curPage; /* buffer to hold whatever page we're looking at */ #ifdef WIN32 UChar *page_buf = alloca((unsigned int)h->block_len); #else UChar page_buf[h->block_len]; #endif struct chmPmglHeader header; UChar *end; UChar *cur; unsigned long lenRemain; /* set to 1 once we've started */ int it_has_begun=0; /* the current ui */ struct chmUnitInfo ui; int flag; /* the length of the prefix */ char prefixRectified[CHM_MAX_PATHLEN+1]; int prefixLen; - char lastPath[CHM_MAX_PATHLEN]; + char lastPath[CHM_MAX_PATHLEN+1]; int lastPathLen; /* starting page */ curPage = h->index_head; /* initialize pathname state */ strncpy(prefixRectified, prefix, CHM_MAX_PATHLEN); prefixLen = strlen(prefixRectified); if (prefixLen != 0) { if (prefixRectified[prefixLen-1] != '/') { prefixRectified[prefixLen] = '/'; prefixRectified[prefixLen+1] = '\0'; ++prefixLen; } } lastPath[0] = '\0'; lastPathLen = -1; /* until we have either returned or given up */ while (curPage != -1) { /* try to fetch the index page */ if (_chm_fetch_bytes(h, page_buf, (UInt64)h->dir_offset + (UInt64)curPage*h->block_len, h->block_len) != h->block_len) return 0; /* figure out start and end for this page */ cur = page_buf; lenRemain = _CHM_PMGL_LEN; if (! _unmarshal_pmgl_header(&cur, &lenRemain, &header)) return 0; end = page_buf + h->block_len - (header.free_space); /* loop over this page */ while (cur < end) { if (! _chm_parse_PMGL_entry(&cur, &ui)) return 0; /* check if we should start */ if (! it_has_begun) { if (ui.length == 0 && strncmp(ui.path, prefixRectified, prefixLen) == 0) it_has_begun = 1; else continue; if (ui.path[prefixLen] == '\0') continue; } /* check if we should stop */ else { if (strncmp(ui.path, prefixRectified, prefixLen) != 0) return 1; } /* check if we should include this path */ if (lastPathLen != -1) { if (strncmp(ui.path, lastPath, lastPathLen) == 0) continue; } - strcpy(lastPath, ui.path); + strncpy(lastPath, ui.path, CHM_MAX_PATHLEN); + lastPath[CHM_MAX_PATHLEN] = '\0'; lastPathLen = strlen(lastPath); /* check for DIRS */ if (ui.length == 0 && !(what & CHM_ENUMERATE_DIRS)) continue; /* check for FILES */ if (ui.length != 0 && !(what & CHM_ENUMERATE_FILES)) continue; /* check for NORMAL vs. META */ if (ui.path[0] == '/') { /* check for NORMAL vs. SPECIAL */ if (ui.path[1] == '#' || ui.path[1] == '$') flag = CHM_ENUMERATE_SPECIAL; else flag = CHM_ENUMERATE_NORMAL; } else flag = CHM_ENUMERATE_META; if (! (what & flag)) continue; /* call the enumerator */ { int status = (*e)(h, &ui, context); switch (status) { case CHM_ENUMERATOR_FAILURE: return 0; case CHM_ENUMERATOR_CONTINUE: break; case CHM_ENUMERATOR_SUCCESS: return 1; default: break; } } } /* advance to next page */ curPage = header.block_next; } return 1; } /* resolve a particular object from the archive */ int chm_resolve_location(struct chmFile *h, unsigned long pos, struct chmUnitInfo *ui) { /* * XXX: implement caching scheme for dir pages */ Int32 curPage; /* buffer to hold whatever page we're looking at */ #ifdef WIN32 UChar *page_buf = alloca(h->block_len); #else UChar page_buf[h->block_len]; #endif /* starting page */ curPage = h->index_root; /* until we have either returned or given up */ while (curPage != -1) { /* try to fetch the index page */ if (_chm_fetch_bytes(h, page_buf, (UInt64)h->dir_offset + (UInt64)curPage*h->block_len, h->block_len) != h->block_len) return CHM_RESOLVE_FAILURE; /* now, if it is a leaf node: */ if (memcmp(page_buf, _chm_pmgl_marker, 4) == 0) { /* scan block */ /* UChar *pEntry = _chm_find_in_PMGL(page_buf, h->block_len, objPath);*/ { /* XXX: modify this to do a binary search using the nice index structure * that is provided for us. */ struct chmPmglHeader header; UInt32 hremain; UChar *end; UChar *cur; UChar *temp; /*
UInt64 strLen; char buffer[CHM_MAX_PATHLEN+1]; */ /* figure out where to start and end */ cur = page_buf; hremain = _CHM_PMGL_LEN; if (! _unmarshal_pmgl_header(&cur, &hremain, &header)) return CHM_RESOLVE_FAILURE; end = page_buf + h->block_len - (header.free_space); /* now, scan progressively */ while (cur < end) { UInt32 st = 0; UInt32 nd = 0; /* grab the name */ temp = cur; if (_chm_parse_PMGL_entry(&cur, ui) == 0) { return CHM_RESOLVE_FAILURE; } st = ui->start; nd = ui->start+ui->length; if ((st <= pos) && (pos < nd)) { printf("Resolve:[%u,%u,%u]\n", st, pos, nd); return CHM_RESOLVE_SUCCESS; } } return CHM_RESOLVE_FAILURE; } } /* else, if it is a branch node: */ else if (memcmp(page_buf, _chm_pmgi_marker, 4) == 0) { /* curPage = _chm_find_in_PMGI(page_buf, h->block_len, objPath);*/ return CHM_RESOLVE_FAILURE; if (0) { /* XXX: modify this to do a binary search using the nice index structure * that is provided for us */ struct chmPmgiHeader header; UInt32 hremain; int page=-1; UChar *end; UChar *cur; UInt64 strLen; char buffer[CHM_MAX_PATHLEN+1]; /* figure out where to start and end */ cur = page_buf; hremain = _CHM_PMGI_LEN; if (! _unmarshal_pmgi_header(&cur, &hremain, &header)) return -1; end = page_buf + h->block_len - (header.free_space); /* now, scan progressively */ while (cur < end) { if (_chm_parse_PMGL_entry(&cur, ui) == 0) { return CHM_RESOLVE_FAILURE; } if (ui->start <= pos && pos < ui->start + ui->length) { return CHM_RESOLVE_SUCCESS; } /* grab the name */ strLen = _chm_parse_cword(&cur); if (! _chm_parse_UTF8(&cur, strLen, buffer)) return -1; /* check if it is the right name */ /* #ifdef WIN32 if (stricmp(buffer, objPath) > 0) return page; #else if (strcasecmp(buffer, objPath) > 0) return page; #endif */ /* load next value for path */ page = (int)_chm_parse_cword(&cur); } curPage = page; } } /* else, we are confused. give up. */ else return CHM_RESOLVE_FAILURE; } /* didn't find anything. fail. */ return CHM_RESOLVE_FAILURE; } diff --git a/noncore/settings/sysinfo/contrib/dhry.c b/noncore/settings/sysinfo/contrib/dhry.c index 20b627c..07fd1c0 100644 --- a/noncore/settings/sysinfo/contrib/dhry.c +++ b/noncore/settings/sysinfo/contrib/dhry.c @@ -1,1010 +1,1010 @@ /*****************************************************/ /* Various timer routines. */ /* Al Aburto, aburto@nosc.mil, 18 Feb 1997 */ /* */ /* t = dtime() outputs the current time in seconds. */ /* Use CAUTION as some of these routines will mess */ /* up when timing across the hour mark!!! */ /* */ /* For timing I use the 'user' time whenever */ /* possible. Using 'user+sys' time is a separate */ /* issue. */ /* */ /* Example Usage: */ /* [timer options added here] */ /* main() */ /* { */ /* double starttime,benchtime,dtime(); */ /* */ /* starttime = dtime(); */ /* [routine to time] */ /* benchtime = dtime() - starttime; */ /* } */ /* */ /* [timer code below added here] */ /*****************************************************/ /***************************************************************/ /* Timer options. You MUST uncomment one of the options below */ /* or compile, for example, with the '-DUNIX' option. */ /***************************************************************/ /* #define Amiga */ /* #define UNIX */ /* #define UNIX_Old */ /* #define VMS */ /* #define BORLAND_C */ /* #define MSC */ /* #define MAC */ /* #define IPSC */ /* #define FORTRAN_SEC */ /* #define GTODay */ /* #define CTimer */ /* #define UXPM */ /* #define MAC_TMgr */ /* #define PARIX */ /* #define POSIX */ /* #define WIN32 */ /* #define POSIX1 */ /***********************/ /*********************************/ /* Timer code. */ /*********************************/ /*******************/ /* Amiga dtime() */ /*******************/ #ifdef Amiga #include <ctype.h> #define HZ 50 double dtime() { double q; struct tt { long days; long minutes; long ticks; } tt; DateStamp(&tt); q = ((double)(tt.ticks + (tt.minutes * 60L * 50L))) / (double)HZ; return q; } #endif /*****************************************************/ /* UNIX dtime(). This is the preferred UNIX timer. */ /* Provided by: Markku Kolkka, mk59200@cc.tut.fi */ /* HP-UX Addition by: Bo Thide', bt@irfu.se */ /*****************************************************/ #ifdef UNIX #include <sys/time.h> #include <sys/resource.h> #ifdef hpux #include <sys/syscall.h> #define getrusage(a,b) syscall(SYS_getrusage,a,b) #endif struct rusage rusage; double dtime() { double q; getrusage(RUSAGE_SELF,&rusage); q = (double)(rusage.ru_utime.tv_sec); q = q + (double)(rusage.ru_utime.tv_usec) * 1.0e-06; return q; } #endif /***************************************************/ /* UNIX_Old dtime(). This is the old UNIX timer. */ /* Make sure HZ is properly defined in param.h !! */ /***************************************************/ #ifdef UNIX_Old #include <sys/types.h> #include <sys/times.h> #include <sys/param.h> #ifndef HZ #define HZ 60 #endif struct tms tms; double dtime() { double q; times(&tms); q = (double)(tms.tms_utime) / (double)HZ; return q; } #endif /*********************************************************/ /* VMS dtime() for VMS systems. */ /* Provided by: RAMO@uvphys.phys.UVic.CA */ /* Some people have run into problems with this timer. */ /*********************************************************/ #ifdef VMS #include time #ifndef HZ #define HZ 100 #endif struct tbuffer_t { int proc_user_time; int proc_system_time; int child_user_time; int child_system_time; }; struct tbuffer_t tms; double dtime() { double q; times(&tms); q = (double)(tms.proc_user_time) / (double)HZ; return q; } #endif /******************************/ /* BORLAND C dtime() for DOS */ /******************************/ #ifdef BORLAND_C #include <ctype.h> #include <dos.h> #include <time.h> #define HZ 100 struct time tnow; double dtime() { double q; gettime(&tnow); q = 60.0 * (double)(tnow.ti_min); q = q + (double)(tnow.ti_sec); q = q + (double)(tnow.ti_hund)/(double)HZ; return q; } #endif /**************************************/ /* Microsoft C (MSC) dtime() for DOS */ /**************************************/ #ifdef MSC #include <time.h> #include <ctype.h> #define HZ CLOCKS_PER_SEC clock_t tnow; double dtime() { double q; tnow = clock(); q = (double)tnow / (double)HZ; return q; } #endif /*************************************/ /* Macintosh (MAC) Think C dtime() */ /*************************************/ #ifdef MAC #include <time.h> #define HZ 60 double dtime() { double q; q = (double)clock() / (double)HZ; return q; } #endif /************************************************************/ /* iPSC/860 (IPSC) dtime() for i860. */ /* Provided by: Dan Yergeau, yergeau@gloworm.Stanford.EDU */ /************************************************************/ #ifdef IPSC extern double dclock(); double dtime() { double q; q = dclock(); return q; } #endif /**************************************************/ /* FORTRAN dtime() for Cray type systems. */ /* This is the preferred timer for Cray systems. */ /**************************************************/ #ifdef FORTRAN_SEC fortran double second(); double dtime() { double q; second(&q); return q; } #endif /***********************************************************/ /* UNICOS C dtime() for Cray UNICOS systems. Don't use */ /* unless absolutely necessary as returned time includes */ /* 'user+system' time. Provided by: R. Mike Dority, */ /* dority@craysea.cray.com */ /***********************************************************/ #ifdef CTimer #include <time.h> double dtime() { double q; clock_t clock(void); q = (double)clock() / (double)CLOCKS_PER_SEC; return q; } #endif /********************************************/ /* Another UNIX timer using gettimeofday(). */ /* However, getrusage() is preferred. */ /********************************************/ #ifdef GTODay #include <sys/time.h> struct timeval tnow; double dtime() { double q; gettimeofday(&tnow,NULL); q = (double)tnow.tv_sec + (double)tnow.tv_usec * 1.0e-6; return q; } #endif /*****************************************************/ /* Fujitsu UXP/M timer. */ /* Provided by: Mathew Lim, ANUSF, M.Lim@anu.edu.au */ /*****************************************************/ #ifdef UXPM #include <sys/types.h> #include <sys/timesu.h> struct tmsu rusage; double dtime() { double q; timesu(&rusage); q = (double)(rusage.tms_utime) * 1.0e-06; return q; } #endif /**********************************************/ /* Macintosh (MAC_TMgr) Think C dtime() */ /* requires Think C Language Extensions or */ /* #include <MacHeaders> in the prefix */ /* provided by Francis H Schiffer 3rd (fhs) */ /* skipschiffer@genie.geis.com */ /**********************************************/ #ifdef MAC_TMgr #include <Timer.h> #include <stdlib.h> static TMTask mgrTimer; static Boolean mgrInited = false; static double mgrClock; #define RMV_TIMER RmvTime( (QElemPtr)&mgrTimer ) #define MAX_TIME 1800000000L /* MAX_TIME limits time between calls to */ /* dtime( ) to no more than 30 minutes */ /* this limitation could be removed by */ /* creating a completion routine to sum */ /* 30 minute segments (fhs 1994 feb 9) */ static void Remove_timer( ) { RMV_TIMER; mgrInited = false; } double dtime( ) { if( mgrInited ) { RMV_TIMER; mgrClock += (MAX_TIME + mgrTimer.tmCount)*1.0e-6; } else { if( _atexit( &Remove_timer ) == 0 ) mgrInited = true; mgrClock = 0.0; } if ( mgrInited ) { mgrTimer.tmAddr = NULL; mgrTimer.tmCount = 0; mgrTimer.tmWakeUp = 0; mgrTimer.tmReserved = 0; InsTime( (QElemPtr)&mgrTimer ); PrimeTime( (QElemPtr)&mgrTimer, -MAX_TIME ); } return( mgrClock ); } #endif /***********************************************************/ /* Parsytec GCel timer. */ /* Provided by: Georg Wambach, gw@informatik.uni-koeln.de */ /***********************************************************/ #ifdef PARIX #include <sys/time.h> double dtime() { double q; q = (double) (TimeNowHigh()) / (double) CLK_TCK_HIGH; return q; } #endif /************************************************/ /* Sun Solaris POSIX dtime() routine */ /* Provided by: Case Larsen, CTLarsen.lbl.gov */ /************************************************/ #ifdef POSIX #include <sys/time.h> #include <sys/resource.h> #include <sys/rusage.h> #ifdef __hpux #include <sys/syscall.h> #endif struct rusage rusage; double dtime() { double q; getrusage(RUSAGE_SELF,&rusage); q = (double)(rusage.ru_utime.tv_sec); q = q + (double)(rusage.ru_utime.tv_nsec) * 1.0e-09; return q; } #endif /****************************************************/ /* Windows NT (32 bit) dtime() routine */ /* Provided by: Piers Haken, piersh@microsoft.com */ /****************************************************/ #ifdef WIN32 #include <windows.h> double dtime(void) { double q; q = (double)GetTickCount() * 1.0e-03; return q; } #endif /*****************************************************/ /* Time according to POSIX.1 - <J.Pelan@qub.ac.uk> */ /* Ref: "POSIX Programmer's Guide" O'Reilly & Assoc.*/ /*****************************************************/ #ifdef POSIX1 #define _POSIX_SOURCE 1 #include <unistd.h> #include <limits.h> #include <sys/times.h> struct tms tms; double dtime() { double q; times(&tms); q = (double)tms.tms_utime / (double)CLK_TCK; return q; } #endif /* ************************************************************************* * * "DHRYSTONE" Benchmark Program * ----------------------------- * * Version: C, Version 2.1 * * File: dhry_1.c (part 2 of 3) * * Date: May 25, 1988 * * Author: Reinhold P. Weicker * ************************************************************************* */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include "dhry.h" /* Global Variables: */ Rec_Pointer Ptr_Glob, Next_Ptr_Glob; int Int_Glob; Boolean Bool_Glob; char Ch_1_Glob, Ch_2_Glob; int Arr_1_Glob [50]; int Arr_2_Glob [50] [50]; -char Reg_Define[] = "Register option selected."; +char Reg_Define[32] = "Register option selected."; //extern char *malloc (); Enumeration Func_1 (); /* forward declaration necessary since Enumeration may not simply be int */ #ifndef ROPT #define REG /* REG becomes defined as empty */ /* i.e. no register variables */ #else #define REG register #endif /* variables for time measurement: */ #define Too_Small_Time 2 /* Measurements should last at least 2 seconds */ double Begin_Time, End_Time, User_Time; double Microseconds, Dhrystones_Per_Second, Vax_Mips; /* end of variables for time measurement */ /**********************************************************************************************/ Proc_1 (Ptr_Val_Par) /******************/ REG Rec_Pointer Ptr_Val_Par; /* executed once */ { REG Rec_Pointer Next_Record = Ptr_Val_Par->Ptr_Comp; /* == Ptr_Glob_Next */ /* Local variable, initialized with Ptr_Val_Par->Ptr_Comp, */ /* corresponds to "rename" in Ada, "with" in Pascal */ structassign (*Ptr_Val_Par->Ptr_Comp, *Ptr_Glob); Ptr_Val_Par->variant.var_1.Int_Comp = 5; Next_Record->variant.var_1.Int_Comp = Ptr_Val_Par->variant.var_1.Int_Comp; Next_Record->Ptr_Comp = Ptr_Val_Par->Ptr_Comp; Proc_3 (&Next_Record->Ptr_Comp); /* Ptr_Val_Par->Ptr_Comp->Ptr_Comp == Ptr_Glob->Ptr_Comp */ if (Next_Record->Discr == Ident_1) /* then, executed */ { Next_Record->variant.var_1.Int_Comp = 6; Proc_6 (Ptr_Val_Par->variant.var_1.Enum_Comp, &Next_Record->variant.var_1.Enum_Comp); Next_Record->Ptr_Comp = Ptr_Glob->Ptr_Comp; Proc_7 (Next_Record->variant.var_1.Int_Comp, 10, &Next_Record->variant.var_1.Int_Comp); } else /* not executed */ structassign (*Ptr_Val_Par, *Ptr_Val_Par->Ptr_Comp); } /* Proc_1 */ Proc_2 (Int_Par_Ref) /******************/ /* executed once */ /* *Int_Par_Ref == 1, becomes 4 */ One_Fifty *Int_Par_Ref; { One_Fifty Int_Loc; Enumeration Enum_Loc; Int_Loc = *Int_Par_Ref + 10; do /* executed once */ if (Ch_1_Glob == 'A') /* then, executed */ { Int_Loc -= 1; *Int_Par_Ref = Int_Loc - Int_Glob; Enum_Loc = Ident_1; } /* if */ while (Enum_Loc != Ident_1); /* true */ } /* Proc_2 */ Proc_3 (Ptr_Ref_Par) /******************/ /* executed once */ /* Ptr_Ref_Par becomes Ptr_Glob */ Rec_Pointer *Ptr_Ref_Par; { if (Ptr_Glob != Null) /* then, executed */ *Ptr_Ref_Par = Ptr_Glob->Ptr_Comp; Proc_7 (10, Int_Glob, &Ptr_Glob->variant.var_1.Int_Comp); } /* Proc_3 */ Proc_4 () /* without parameters */ /*******/ /* executed once */ { Boolean Bool_Loc; Bool_Loc = Ch_1_Glob == 'A'; Bool_Glob = Bool_Loc | Bool_Glob; Ch_2_Glob = 'B'; } /* Proc_4 */ Proc_5 () /* without parameters */ /*******/ /* executed once */ { Ch_1_Glob = 'A'; Bool_Glob = false; } /* Proc_5 */ /* Procedure for the assignment of structures, */ /* if the C compiler doesn't support this feature */ #ifdef NOSTRUCTASSIGN memcpy (d, s, l) register char *d; register char *s; register int l; { while (l--) *d++ = *s++; } #endif Proc_6 (Enum_Val_Par, Enum_Ref_Par) /*********************************/ /* executed once */ /* Enum_Val_Par == Ident_3, Enum_Ref_Par becomes Ident_2 */ Enumeration Enum_Val_Par; Enumeration *Enum_Ref_Par; { *Enum_Ref_Par = Enum_Val_Par; if (! Func_3 (Enum_Val_Par)) /* then, not executed */ *Enum_Ref_Par = Ident_4; switch (Enum_Val_Par) { case Ident_1: *Enum_Ref_Par = Ident_1; break; case Ident_2: if (Int_Glob > 100) /* then */ *Enum_Ref_Par = Ident_1; else *Enum_Ref_Par = Ident_4; break; case Ident_3: /* executed */ *Enum_Ref_Par = Ident_2; break; case Ident_4: break; case Ident_5: *Enum_Ref_Par = Ident_3; break; } /* switch */ } /* Proc_6 */ Proc_7 (Int_1_Par_Val, Int_2_Par_Val, Int_Par_Ref) /**********************************************/ /* executed three times */ /* first call: Int_1_Par_Val == 2, Int_2_Par_Val == 3, */ /* Int_Par_Ref becomes 7 */ /* second call: Int_1_Par_Val == 10, Int_2_Par_Val == 5, */ /* Int_Par_Ref becomes 17 */ /* third call: Int_1_Par_Val == 6, Int_2_Par_Val == 10, */ /* Int_Par_Ref becomes 18 */ One_Fifty Int_1_Par_Val; One_Fifty Int_2_Par_Val; One_Fifty *Int_Par_Ref; { One_Fifty Int_Loc; Int_Loc = Int_1_Par_Val + 2; *Int_Par_Ref = Int_2_Par_Val + Int_Loc; } /* Proc_7 */ Proc_8 (Arr_1_Par_Ref, Arr_2_Par_Ref, Int_1_Par_Val, Int_2_Par_Val) /*********************************************************************/ /* executed once */ /* Int_Par_Val_1 == 3 */ /* Int_Par_Val_2 == 7 */ Arr_1_Dim Arr_1_Par_Ref; Arr_2_Dim Arr_2_Par_Ref; int Int_1_Par_Val; int Int_2_Par_Val; { REG One_Fifty Int_Index; REG One_Fifty Int_Loc; Int_Loc = Int_1_Par_Val + 5; Arr_1_Par_Ref [Int_Loc] = Int_2_Par_Val; Arr_1_Par_Ref [Int_Loc+1] = Arr_1_Par_Ref [Int_Loc]; Arr_1_Par_Ref [Int_Loc+30] = Int_Loc; for (Int_Index = Int_Loc; Int_Index <= Int_Loc+1; ++Int_Index) Arr_2_Par_Ref [Int_Loc] [Int_Index] = Int_Loc; Arr_2_Par_Ref [Int_Loc] [Int_Loc-1] += 1; Arr_2_Par_Ref [Int_Loc+20] [Int_Loc] = Arr_1_Par_Ref [Int_Loc]; Int_Glob = 5; } /* Proc_8 */ Enumeration Func_1 (Ch_1_Par_Val, Ch_2_Par_Val) /*************************************************/ /* executed three times */ /* first call: Ch_1_Par_Val == 'H', Ch_2_Par_Val == 'R' */ /* second call: Ch_1_Par_Val == 'A', Ch_2_Par_Val == 'C' */ /* third call: Ch_1_Par_Val == 'B', Ch_2_Par_Val == 'C' */ Capital_Letter Ch_1_Par_Val; Capital_Letter Ch_2_Par_Val; { Capital_Letter Ch_1_Loc; Capital_Letter Ch_2_Loc; Ch_1_Loc = Ch_1_Par_Val; Ch_2_Loc = Ch_1_Loc; if (Ch_2_Loc != Ch_2_Par_Val) /* then, executed */ return (Ident_1); else /* not executed */ { Ch_1_Glob = Ch_1_Loc; return (Ident_2); } } /* Func_1 */ Boolean Func_2 (Str_1_Par_Ref, Str_2_Par_Ref) /*************************************************/ /* executed once */ /* Str_1_Par_Ref == "DHRYSTONE PROGRAM, 1'ST STRING" */ /* Str_2_Par_Ref == "DHRYSTONE PROGRAM, 2'ND STRING" */ Str_30 Str_1_Par_Ref; Str_30 Str_2_Par_Ref; { REG One_Thirty Int_Loc; Capital_Letter Ch_Loc; Int_Loc = 2; while (Int_Loc <= 2) /* loop body executed once */ if (Func_1 (Str_1_Par_Ref[Int_Loc], Str_2_Par_Ref[Int_Loc+1]) == Ident_1) /* then, executed */ { Ch_Loc = 'A'; Int_Loc += 1; } /* if, while */ if (Ch_Loc >= 'W' && Ch_Loc < 'Z') /* then, not executed */ Int_Loc = 7; if (Ch_Loc == 'R') /* then, not executed */ return (true); else /* executed */ { if (strcmp (Str_1_Par_Ref, Str_2_Par_Ref) > 0) /* then, not executed */ { Int_Loc += 7; Int_Glob = Int_Loc; return (true); } else /* executed */ return (false); } /* if Ch_Loc */ } /* Func_2 */ Boolean Func_3 (Enum_Par_Val) /***************************/ /* executed once */ /* Enum_Par_Val == Ident_3 */ Enumeration Enum_Par_Val; { Enumeration Enum_Loc; Enum_Loc = Enum_Par_Val; if (Enum_Loc == Ident_3) /* then, executed */ return (true); else /* not executed */ return (false); } /* Func_3 */ /*********************************************************************************/ double dhry_main( int n ) /*****/ /* main program, corresponds to procedures */ /* Main and Proc_0 in the Ada version */ { One_Fifty Int_1_Loc; REG One_Fifty Int_2_Loc; One_Fifty Int_3_Loc; REG char Ch_Index; Enumeration Enum_Loc; Str_30 Str_1_Loc; Str_30 Str_2_Loc; REG int Run_Index; REG int Number_Of_Runs; FILE *Ap; /* Initializations */ /* if ((Ap = fopen("dhry.res","a+")) == NULL) { printf("Can not open dhry.res\n\n"); exit(1); } */ Next_Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type)); Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type)); Ptr_Glob->Ptr_Comp = Next_Ptr_Glob; Ptr_Glob->Discr = Ident_1; Ptr_Glob->variant.var_1.Enum_Comp = Ident_3; Ptr_Glob->variant.var_1.Int_Comp = 40; strcpy (Ptr_Glob->variant.var_1.Str_Comp, "DHRYSTONE PROGRAM, SOME STRING"); strcpy (Str_1_Loc, "DHRYSTONE PROGRAM, 1'ST STRING"); Arr_2_Glob [8][7] = 10; /* Was missing in published program. Without this statement, */ /* Arr_2_Glob [8][7] would have an undefined value. */ /* Warning: With 16-Bit processors and Number_Of_Runs > 32000, */ /* overflow may occur for this array element. */ /* if (Reg) { printf ("Program compiled with 'register' attribute\n"); printf ("\n"); } else { printf ("Program compiled without 'register' attribute\n"); printf ("\n"); } */ Number_Of_Runs = n; /***************/ /* Start timer */ /***************/ Begin_Time = dtime(); for (Run_Index = 1; Run_Index <= Number_Of_Runs; ++Run_Index) { Proc_5(); Proc_4(); /* Ch_1_Glob == 'A', Ch_2_Glob == 'B', Bool_Glob == true */ Int_1_Loc = 2; Int_2_Loc = 3; strcpy (Str_2_Loc, "DHRYSTONE PROGRAM, 2'ND STRING"); Enum_Loc = Ident_2; Bool_Glob = ! Func_2 (Str_1_Loc, Str_2_Loc); /* Bool_Glob == 1 */ while (Int_1_Loc < Int_2_Loc) /* loop body executed once */ { Int_3_Loc = 5 * Int_1_Loc - Int_2_Loc; /* Int_3_Loc == 7 */ Proc_7 (Int_1_Loc, Int_2_Loc, &Int_3_Loc); /* Int_3_Loc == 7 */ Int_1_Loc += 1; } /* while */ /* Int_1_Loc == 3, Int_2_Loc == 3, Int_3_Loc == 7 */ Proc_8 (Arr_1_Glob, Arr_2_Glob, Int_1_Loc, Int_3_Loc); /* Int_Glob == 5 */ Proc_1 (Ptr_Glob); for (Ch_Index = 'A'; Ch_Index <= Ch_2_Glob; ++Ch_Index) /* loop body executed twice */ { if (Enum_Loc == Func_1 (Ch_Index, 'C')) /* then, not executed */ { Proc_6 (Ident_1, &Enum_Loc); strcpy (Str_2_Loc, "DHRYSTONE PROGRAM, 3'RD STRING"); Int_2_Loc = Run_Index; Int_Glob = Run_Index; } } /* Int_1_Loc == 3, Int_2_Loc == 3, Int_3_Loc == 7 */ Int_2_Loc = Int_2_Loc * Int_1_Loc; Int_1_Loc = Int_2_Loc / Int_3_Loc; Int_2_Loc = 7 * (Int_2_Loc - Int_3_Loc) - Int_1_Loc; /* Int_1_Loc == 1, Int_2_Loc == 13, Int_3_Loc == 7 */ Proc_2 (&Int_1_Loc); /* Int_1_Loc == 5 */ } /* loop "for Run_Index" */ /**************/ /* Stop timer */ /**************/ End_Time = dtime(); /* printf ("Execution ends\n"); printf ("\n"); printf ("Final values of the variables used in the benchmark:\n"); printf ("\n"); printf ("Int_Glob: %d\n", Int_Glob); printf (" should be: %d\n", 5); printf ("Bool_Glob: %d\n", Bool_Glob); printf (" should be: %d\n", 1); printf ("Ch_1_Glob: %c\n", Ch_1_Glob); printf (" should be: %c\n", 'A'); printf ("Ch_2_Glob: %c\n", Ch_2_Glob); printf (" should be: %c\n", 'B'); printf ("Arr_1_Glob[8]: %d\n", Arr_1_Glob[8]); printf (" should be: %d\n", 7); printf ("Arr_2_Glob[8][7]: %d\n", Arr_2_Glob[8][7]); printf (" should be: Number_Of_Runs + 10\n"); printf ("Ptr_Glob->\n"); printf (" Ptr_Comp: %d\n", (int) Ptr_Glob->Ptr_Comp); printf (" should be: (implementation-dependent)\n"); printf (" Discr: %d\n", Ptr_Glob->Discr); printf (" should be: %d\n", 0); printf (" Enum_Comp: %d\n", Ptr_Glob->variant.var_1.Enum_Comp); printf (" should be: %d\n", 2); printf (" Int_Comp: %d\n", Ptr_Glob->variant.var_1.Int_Comp); printf (" should be: %d\n", 17); printf (" Str_Comp: %s\n", Ptr_Glob->variant.var_1.Str_Comp); printf (" should be: DHRYSTONE PROGRAM, SOME STRING\n"); printf ("Next_Ptr_Glob->\n"); printf (" Ptr_Comp: %d\n", (int) Next_Ptr_Glob->Ptr_Comp); printf (" should be: (implementation-dependent), same as above\n"); printf (" Discr: %d\n", Next_Ptr_Glob->Discr); printf (" should be: %d\n", 0); printf (" Enum_Comp: %d\n", Next_Ptr_Glob->variant.var_1.Enum_Comp); printf (" should be: %d\n", 1); printf (" Int_Comp: %d\n", Next_Ptr_Glob->variant.var_1.Int_Comp); printf (" should be: %d\n", 18); printf (" Str_Comp: %s\n", Next_Ptr_Glob->variant.var_1.Str_Comp); printf (" should be: DHRYSTONE PROGRAM, SOME STRING\n"); printf ("Int_1_Loc: %d\n", Int_1_Loc); printf (" should be: %d\n", 5); printf ("Int_2_Loc: %d\n", Int_2_Loc); printf (" should be: %d\n", 13); printf ("Int_3_Loc: %d\n", Int_3_Loc); printf (" should be: %d\n", 7); printf ("Enum_Loc: %d\n", Enum_Loc); printf (" should be: %d\n", 1); printf ("Str_1_Loc: %s\n", Str_1_Loc); printf (" should be: DHRYSTONE PROGRAM, 1'ST STRING\n"); printf ("Str_2_Loc: %s\n", Str_2_Loc); printf (" should be: DHRYSTONE PROGRAM, 2'ND STRING\n"); printf ("\n"); */ User_Time = End_Time - Begin_Time; if (User_Time < Too_Small_Time) return -1; else { Microseconds = User_Time * Mic_secs_Per_Second / (double) Number_Of_Runs; Dhrystones_Per_Second = (double) Number_Of_Runs / User_Time; Vax_Mips = Dhrystones_Per_Second / 1757.0; #ifdef ROPT //printf ("Register option selected? YES\n"); #else //printf ("Register option selected? NO\n"); - strcpy(Reg_Define, "Register option not selected."); + strncpy(Reg_Define, "Register option not selected.", 30); #endif printf ("Microseconds for one run through Dhrystone: "); printf ("%7.1lf \n", Microseconds); printf ("Dhrystones per Second: "); printf ("%10.1lf \n", Dhrystones_Per_Second); printf ("VAX MIPS rating = %10.3lf \n",Vax_Mips); printf ("\n"); return Dhrystones_Per_Second; /* fprintf(Ap,"\n"); fprintf(Ap,"Dhrystone Benchmark, Version 2.1 (Language: C)\n"); fprintf(Ap,"%s\n",Reg_Define); fprintf(Ap,"Microseconds for one loop: %7.1lf\n",Microseconds); fprintf(Ap,"Dhrystones per second: %10.1lf\n",Dhrystones_Per_Second); fprintf(Ap,"VAX MIPS rating: %10.3lf\n",Vax_Mips); fclose(Ap); */ } } |