author | zecke <zecke> | 2002-11-03 11:14:01 (UTC) |
---|---|---|
committer | zecke <zecke> | 2002-11-03 11:14:01 (UTC) |
commit | 57e4563332689305ac247ca2e259b37c3592f389 (patch) (side-by-side diff) | |
tree | b9b20a5a115c9aff7163db1a517a32d19a293b34 | |
parent | 5ec23891e1c5b7bc571d86326b511d1a48b14c45 (diff) | |
download | opie-57e4563332689305ac247ca2e259b37c3592f389.zip opie-57e4563332689305ac247ca2e259b37c3592f389.tar.gz opie-57e4563332689305ac247ca2e259b37c3592f389.tar.bz2 |
include fixlet
-rw-r--r-- | noncore/styles/theme/ogfxeffect.cpp | 2 |
1 files changed, 2 insertions, 0 deletions
diff --git a/noncore/styles/theme/ogfxeffect.cpp b/noncore/styles/theme/ogfxeffect.cpp index cc5bbcd..2071a67 100644 --- a/noncore/styles/theme/ogfxeffect.cpp +++ b/noncore/styles/theme/ogfxeffect.cpp @@ -1,507 +1,509 @@ /* This file is part of the KDE libraries Copyright (C) 1998, 1999 Christian Tibirna <ctibirna@total.net> (C) 1998, 1999 Daniel M. Duley <mosfet@kde.org> (C) 1998, 1999 Dirk A. Mueller <mueller@kde.org> */ // $Id$ #include <qimage.h> #include <qpainter.h> #include <qpe/qmath.h> #include "ogfxeffect.h" +#include <cstdlib> +#include <cmath> //====================================================================== // // Gradient effects // //====================================================================== QPixmap& OGfxEffect::gradient(QPixmap &pixmap, const QColor &ca, const QColor &cb, GradientType eff, int ncols) { QImage image = gradient(pixmap.size(), ca, cb, eff, ncols); pixmap.convertFromImage(image); return pixmap; } QImage OGfxEffect::gradient(const QSize &size, const QColor &ca, const QColor &cb, GradientType eff, int /*ncols*/) { int rDiff, gDiff, bDiff; int rca, gca, bca, rcb, gcb, bcb; QImage image(size, 32); if (size.width() == 0 || size.height() == 0) { qDebug ( "WARNING: OGfxEffect::gradient: invalid image" ); return image; } register int x, y; rDiff = (rcb = cb.red()) - (rca = ca.red()); gDiff = (gcb = cb.green()) - (gca = ca.green()); bDiff = (bcb = cb.blue()) - (bca = ca.blue()); if( eff == VerticalGradient || eff == HorizontalGradient ){ uint *p; uint rgb; register int rl = rca << 16; register int gl = gca << 16; register int bl = bca << 16; if( eff == VerticalGradient ) { int rcdelta = ((1<<16) / size.height()) * rDiff; int gcdelta = ((1<<16) / size.height()) * gDiff; int bcdelta = ((1<<16) / size.height()) * bDiff; for ( y = 0; y < size.height(); y++ ) { p = (uint *) image.scanLine(y); rl += rcdelta; gl += gcdelta; bl += bcdelta; rgb = qRgb( (rl>>16), (gl>>16), (bl>>16) ); for( x = 0; x < size.width(); x++ ) { *p = rgb; p++; } } } else { // must be HorizontalGradient unsigned int *o_src = (unsigned int *)image.scanLine(0); unsigned int *src = o_src; int rcdelta = ((1<<16) / size.width()) * rDiff; int gcdelta = ((1<<16) / size.width()) * gDiff; int bcdelta = ((1<<16) / size.width()) * bDiff; for( x = 0; x < size.width(); x++) { rl += rcdelta; gl += gcdelta; bl += bcdelta; *src++ = qRgb( (rl>>16), (gl>>16), (bl>>16)); } src = o_src; // Believe it or not, manually copying in a for loop is faster // than calling memcpy for each scanline (on the order of ms...). // I think this is due to the function call overhead (mosfet). for (y = 1; y < size.height(); ++y) { p = (unsigned int *)image.scanLine(y); src = o_src; for(x=0; x < size.width(); ++x) *p++ = *src++; } } } else { float rfd, gfd, bfd; float rd = rca, gd = gca, bd = bca; unsigned char *xtable[3]; unsigned char *ytable[3]; unsigned int w = size.width(), h = size.height(); xtable[0] = new unsigned char[w]; xtable[1] = new unsigned char[w]; xtable[2] = new unsigned char[w]; ytable[0] = new unsigned char[h]; ytable[1] = new unsigned char[h]; ytable[2] = new unsigned char[h]; w*=2, h*=2; if ( eff == DiagonalGradient || eff == CrossDiagonalGradient) { // Diagonal dgradient code inspired by BlackBox (mosfet) // BlackBox dgradient is (C) Brad Hughes, <bhughes@tcac.net> and // Mike Cole <mike@mydot.com>. rfd = (float)rDiff/w; gfd = (float)gDiff/w; bfd = (float)bDiff/w; int dir; for (x = 0; x < size.width(); x++, rd+=rfd, gd+=gfd, bd+=bfd) { dir = eff == DiagonalGradient? x : size.width() - x - 1; xtable[0][dir] = (unsigned char) rd; xtable[1][dir] = (unsigned char) gd; xtable[2][dir] = (unsigned char) bd; } rfd = (float)rDiff/h; gfd = (float)gDiff/h; bfd = (float)bDiff/h; rd = gd = bd = 0; for (y = 0; y < size.height(); y++, rd+=rfd, gd+=gfd, bd+=bfd) { ytable[0][y] = (unsigned char) rd; ytable[1][y] = (unsigned char) gd; ytable[2][y] = (unsigned char) bd; } for (y = 0; y < size.height(); y++) { unsigned int *scanline = (unsigned int *)image.scanLine(y); for (x = 0; x < size.width(); x++) { scanline[x] = qRgb(xtable[0][x] + ytable[0][y], xtable[1][x] + ytable[1][y], xtable[2][x] + ytable[2][y]); } } } else if (eff == RectangleGradient || eff == PyramidGradient || eff == PipeCrossGradient || eff == EllipticGradient) { int rSign = rDiff>0? 1: -1; int gSign = gDiff>0? 1: -1; int bSign = bDiff>0? 1: -1; rfd = (float)rDiff / size.width(); gfd = (float)gDiff / size.width(); bfd = (float)bDiff / size.width(); rd = (float)rDiff/2; gd = (float)gDiff/2; bd = (float)bDiff/2; for (x = 0; x < size.width(); x++, rd-=rfd, gd-=gfd, bd-=bfd) { xtable[0][x] = (unsigned char) abs((int)rd); xtable[1][x] = (unsigned char) abs((int)gd); xtable[2][x] = (unsigned char) abs((int)bd); } rfd = (float)rDiff/size.height(); gfd = (float)gDiff/size.height(); bfd = (float)bDiff/size.height(); rd = (float)rDiff/2; gd = (float)gDiff/2; bd = (float)bDiff/2; for (y = 0; y < size.height(); y++, rd-=rfd, gd-=gfd, bd-=bfd) { ytable[0][y] = (unsigned char) abs((int)rd); ytable[1][y] = (unsigned char) abs((int)gd); ytable[2][y] = (unsigned char) abs((int)bd); } unsigned int rgb; int h = (size.height()+1)>>1; for (y = 0; y < h; y++) { unsigned int *sl1 = (unsigned int *)image.scanLine(y); unsigned int *sl2 = (unsigned int *)image.scanLine(QMAX(size.height()-y-1, y)); int w = (size.width()+1)>>1; int x2 = size.width()-1; for (x = 0; x < w; x++, x2--) { rgb = 0; if (eff == PyramidGradient) { rgb = qRgb(rcb-rSign*(xtable[0][x]+ytable[0][y]), gcb-gSign*(xtable[1][x]+ytable[1][y]), bcb-bSign*(xtable[2][x]+ytable[2][y])); } if (eff == RectangleGradient) { rgb = qRgb(rcb - rSign * QMAX(xtable[0][x], ytable[0][y]) * 2, gcb - gSign * QMAX(xtable[1][x], ytable[1][y]) * 2, bcb - bSign * QMAX(xtable[2][x], ytable[2][y]) * 2); } if (eff == PipeCrossGradient) { rgb = qRgb(rcb - rSign * QMIN(xtable[0][x], ytable[0][y]) * 2, gcb - gSign * QMIN(xtable[1][x], ytable[1][y]) * 2, bcb - bSign * QMIN(xtable[2][x], ytable[2][y]) * 2); } if (eff == EllipticGradient) { rgb = qRgb(rcb - rSign * (int)sqrt((xtable[0][x]*xtable[0][x] + ytable[0][y]*ytable[0][y])*2.0), gcb - gSign * (int)sqrt((xtable[1][x]*xtable[1][x] + ytable[1][y]*ytable[1][y])*2.0), bcb - bSign * (int)sqrt((xtable[2][x]*xtable[2][x] + ytable[2][y]*ytable[2][y])*2.0)); } sl1[x] = sl2[x] = rgb; sl1[x2] = sl2[x2] = rgb; } } } delete [] xtable[0]; delete [] xtable[1]; delete [] xtable[2]; delete [] ytable[0]; delete [] ytable[1]; delete [] ytable[2]; } return image; } //====================================================================== // // Blend effects // //====================================================================== QPixmap& OGfxEffect::blend(QPixmap &pixmap, float initial_intensity, const QColor &bgnd, GradientType eff, bool anti_dir, int /*ncols*/) { QImage image = pixmap.convertToImage(); OGfxEffect::blend(image, initial_intensity, bgnd, eff, anti_dir); if ( pixmap. depth ( ) <= 8 ) image. convertDepth ( pixmap. depth ( )); pixmap.convertFromImage(image); return pixmap; } QImage& OGfxEffect::blend(QImage &image, float initial_intensity, const QColor &bgnd, GradientType eff, bool anti_dir) { if (image.width() == 0 || image.height() == 0) { qDebug ( "Invalid image\n" ); return image; } int r_bgnd = bgnd.red(), g_bgnd = bgnd.green(), b_bgnd = bgnd.blue(); int r, g, b; int ind; unsigned int xi, xf, yi, yf; unsigned int a; // check the boundaries of the initial intesity param float unaffected = 1; if (initial_intensity > 1) initial_intensity = 1; if (initial_intensity < -1) initial_intensity = -1; if (initial_intensity < 0) { unaffected = 1. + initial_intensity; initial_intensity = 0; } float intensity = initial_intensity; float var = 1. - initial_intensity; if (anti_dir) { initial_intensity = intensity = 1.; var = -var; } register int x, y; unsigned int *data = (unsigned int *)image.bits(); if( eff == VerticalGradient || eff == HorizontalGradient ) { // set the image domain to apply the effect to xi = 0, xf = image.width(); yi = 0, yf = image.height(); if (eff == VerticalGradient) { if (anti_dir) yf = (int)(image.height() * unaffected); else yi = (int)(image.height() * (1 - unaffected)); } else { if (anti_dir) xf = (int)(image.width() * unaffected); else xi = (int)(image.height() * (1 - unaffected)); } var /= (eff == VerticalGradient?yf-yi:xf-xi); for (y = yi; y < (int)yf; y++) { intensity = eff == VerticalGradient? intensity + var : initial_intensity; for (x = xi; x < (int)xf ; x++) { if (eff == HorizontalGradient) intensity += var; ind = x + image.width() * y ; r = qRed (data[ind]) + (int)(intensity * (r_bgnd - qRed (data[ind]))); g = qGreen(data[ind]) + (int)(intensity * (g_bgnd - qGreen(data[ind]))); b = qBlue (data[ind]) + (int)(intensity * (b_bgnd - qBlue (data[ind]))); if (r > 255) r = 255; if (r < 0 ) r = 0; if (g > 255) g = 255; if (g < 0 ) g = 0; if (b > 255) b = 255; if (b < 0 ) b = 0; a = qAlpha(data[ind]); data[ind] = qRgba(r, g, b, a); } } } else if (eff == DiagonalGradient || eff == CrossDiagonalGradient) { float xvar = var / 2 / image.width(); // / unaffected; float yvar = var / 2 / image.height(); // / unaffected; float tmp; for (x = 0; x < image.width() ; x++) { tmp = xvar * (eff == DiagonalGradient? x : image.width()-x-1); for (y = 0; y < image.height() ; y++) { intensity = initial_intensity + tmp + yvar * y; ind = x + image.width() * y ; r = qRed (data[ind]) + (int)(intensity * (r_bgnd - qRed (data[ind]))); g = qGreen(data[ind]) + (int)(intensity * (g_bgnd - qGreen(data[ind]))); b = qBlue (data[ind]) + (int)(intensity * (b_bgnd - qBlue (data[ind]))); if (r > 255) r = 255; if (r < 0 ) r = 0; if (g > 255) g = 255; if (g < 0 ) g = 0; if (b > 255) b = 255; if (b < 0 ) b = 0; a = qAlpha(data[ind]); data[ind] = qRgba(r, g, b, a); } } } else if (eff == RectangleGradient || eff == EllipticGradient) { float xvar; float yvar; for (x = 0; x < image.width() / 2 + image.width() % 2; x++) { xvar = var / image.width() * (image.width() - x*2/unaffected-1); for (y = 0; y < image.height() / 2 + image.height() % 2; y++) { yvar = var / image.height() * (image.height() - y*2/unaffected -1); if (eff == RectangleGradient) intensity = initial_intensity + QMAX(xvar, yvar); else intensity = initial_intensity + qSqrt(xvar * xvar + yvar * yvar); if (intensity > 1) intensity = 1; if (intensity < 0) intensity = 0; //NW ind = x + image.width() * y ; r = qRed (data[ind]) + (int)(intensity * (r_bgnd - qRed (data[ind]))); g = qGreen(data[ind]) + (int)(intensity * (g_bgnd - qGreen(data[ind]))); b = qBlue (data[ind]) + (int)(intensity * (b_bgnd - qBlue (data[ind]))); if (r > 255) r = 255; if (r < 0 ) r = 0; if (g > 255) g = 255; if (g < 0 ) g = 0; if (b > 255) b = 255; if (b < 0 ) b = 0; a = qAlpha(data[ind]); data[ind] = qRgba(r, g, b, a); //NE ind = image.width() - x - 1 + image.width() * y ; r = qRed (data[ind]) + (int)(intensity * (r_bgnd - qRed (data[ind]))); g = qGreen(data[ind]) + (int)(intensity * (g_bgnd - qGreen(data[ind]))); b = qBlue (data[ind]) + (int)(intensity * (b_bgnd - qBlue (data[ind]))); if (r > 255) r = 255; if (r < 0 ) r = 0; if (g > 255) g = 255; if (g < 0 ) g = 0; if (b > 255) b = 255; if (b < 0 ) b = 0; a = qAlpha(data[ind]); data[ind] = qRgba(r, g, b, a); } } //CT loop is doubled because of stupid central row/column issue. // other solution? for (x = 0; x < image.width() / 2; x++) { xvar = var / image.width() * (image.width() - x*2/unaffected-1); for (y = 0; y < image.height() / 2; y++) { yvar = var / image.height() * (image.height() - y*2/unaffected -1); if (eff == RectangleGradient) intensity = initial_intensity + QMAX(xvar, yvar); else intensity = initial_intensity + qSqrt(xvar * xvar + yvar * yvar); if (intensity > 1) intensity = 1; if (intensity < 0) intensity = 0; //SW ind = x + image.width() * (image.height() - y -1) ; r = qRed (data[ind]) + (int)(intensity * (r_bgnd - qRed (data[ind]))); g = qGreen(data[ind]) + (int)(intensity * (g_bgnd - qGreen(data[ind]))); b = qBlue (data[ind]) + (int)(intensity * (b_bgnd - qBlue (data[ind]))); if (r > 255) r = 255; if (r < 0 ) r = 0; if (g > 255) g = 255; if (g < 0 ) g = 0; if (b > 255) b = 255; if (b < 0 ) b = 0; a = qAlpha(data[ind]); data[ind] = qRgba(r, g, b, a); //SE ind = image.width()-x-1 + image.width() * (image.height() - y - 1) ; r = qRed (data[ind]) + (int)(intensity * (r_bgnd - qRed (data[ind]))); g = qGreen(data[ind]) + (int)(intensity * (g_bgnd - qGreen(data[ind]))); b = qBlue (data[ind]) + (int)(intensity * (b_bgnd - qBlue (data[ind]))); if (r > 255) r = 255; if (r < 0 ) r = 0; if (g > 255) g = 255; if (g < 0 ) g = 0; if (b > 255) b = 255; if (b < 0 ) b = 0; a = qAlpha(data[ind]); data[ind] = qRgba(r, g, b, a); } } } else qDebug ( "not implemented\n" ); return image; } #if 0 // Not very efficient as we create a third big image... // QImage& KQGfxEffect::blend(QImage &image1, QImage &image2, GradientType gt, int xf, int yf) { if (image1.width() == 0 || image1.height() == 0 || image2.width() == 0 || image2.height() == 0) return image1; QImage image3; image3 = KQGfxEffect::unbalancedGradient(image1.size(), QColor(0,0,0), QColor(255,255,255), gt, xf, yf, 0); return blend(image1,image2,image3, Red); // Channel to use is arbitrary } #endif |