summaryrefslogtreecommitdiff
path: root/core/multimedia/opieplayer/libmad/layer3.c
Side-by-side diff
Diffstat (limited to 'core/multimedia/opieplayer/libmad/layer3.c') (more/less context) (ignore whitespace changes)
-rw-r--r--core/multimedia/opieplayer/libmad/layer3.c150
1 files changed, 80 insertions, 70 deletions
diff --git a/core/multimedia/opieplayer/libmad/layer3.c b/core/multimedia/opieplayer/libmad/layer3.c
index 194fc7e..03f13fe 100644
--- a/core/multimedia/opieplayer/libmad/layer3.c
+++ b/core/multimedia/opieplayer/libmad/layer3.c
@@ -1,14 +1,14 @@
/*
- * mad - MPEG audio decoder
+ * libmad - MPEG audio decoder library
* Copyright (C) 2000-2001 Robert Leslie
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
@@ -18,48 +18,56 @@
*
* $Id$
*/
# ifdef HAVE_CONFIG_H
# include "libmad_config.h"
# endif
# include "libmad_global.h"
# include <stdlib.h>
# include <string.h>
-# include <assert.h>
+
+# ifdef HAVE_ASSERT_H
+# include <assert.h>
+# endif
# ifdef HAVE_LIMITS_H
# include <limits.h>
# else
# define CHAR_BIT 8
# endif
# include "fixed.h"
# include "bit.h"
# include "stream.h"
# include "frame.h"
# include "huffman.h"
# include "layer3.h"
/* --- Layer III ----------------------------------------------------------- */
enum {
count1table_select = 0x01,
scalefac_scale = 0x02,
preflag = 0x04,
mixed_block_flag = 0x08
};
+enum {
+ I_STEREO = 0x1,
+ MS_STEREO = 0x2
+};
+
struct sideinfo {
unsigned int main_data_begin;
unsigned int private_bits;
unsigned char scfsi[2];
struct granule {
struct channel {
/* from side info */
unsigned short part2_3_length;
unsigned short big_values;
unsigned short global_gain;
@@ -494,25 +502,25 @@ mad_fixed_t const is_lsf_table[2][15] = {
/*
* NAME: III_sideinfo()
* DESCRIPTION: decode frame side information from a bitstream
*/
static
enum mad_error III_sideinfo(struct mad_bitptr *ptr, unsigned int nch,
int lsf, struct sideinfo *si,
unsigned int *data_bitlen,
unsigned int *priv_bitlen)
{
unsigned int ngr, gr, ch, i;
- enum mad_error result = 0;
+ enum mad_error result = MAD_ERROR_NONE;
*data_bitlen = 0;
*priv_bitlen = lsf ? ((nch == 1) ? 1 : 2) : ((nch == 1) ? 5 : 3);
si->main_data_begin = mad_bit_read(ptr, lsf ? 8 : 9);
si->private_bits = mad_bit_read(ptr, *priv_bitlen);
ngr = 1;
if (!lsf) {
ngr = 2;
for (ch = 0; ch < nch; ++ch)
@@ -593,25 +601,25 @@ unsigned int III_scalefactors_lsf(struct mad_bitptr *ptr,
struct channel *gr1ch, int mode_extension)
{
struct mad_bitptr start;
unsigned int scalefac_compress, index, slen[4], part, n, i;
unsigned char const *nsfb;
start = *ptr;
scalefac_compress = channel->scalefac_compress;
index = (channel->block_type == 2) ?
((channel->flags & mixed_block_flag) ? 2 : 1) : 0;
- if (!((mode_extension & 0x1) && gr1ch)) {
+ if (!((mode_extension & I_STEREO) && gr1ch)) {
if (scalefac_compress < 400) {
slen[0] = (scalefac_compress >> 4) / 5;
slen[1] = (scalefac_compress >> 4) % 5;
slen[2] = (scalefac_compress % 16) >> 2;
slen[3] = scalefac_compress % 4;
nsfb = nsfb_table[0][index];
}
else if (scalefac_compress < 500) {
scalefac_compress -= 400;
slen[0] = (scalefac_compress >> 2) / 5;
@@ -634,25 +642,25 @@ unsigned int III_scalefactors_lsf(struct mad_bitptr *ptr,
nsfb = nsfb_table[2][index];
}
n = 0;
for (part = 0; part < 4; ++part) {
for (i = 0; i < nsfb[part]; ++i)
channel->scalefac[n++] = mad_bit_read(ptr, slen[part]);
}
while (n < 39)
channel->scalefac[n++] = 0;
}
- else { /* (mode_extension & 0x1) && gr1ch (i.e. ch == 1) */
+ else { /* (mode_extension & I_STEREO) && gr1ch (i.e. ch == 1) */
scalefac_compress >>= 1;
if (scalefac_compress < 180) {
slen[0] = scalefac_compress / 36;
slen[1] = (scalefac_compress % 36) / 6;
slen[2] = (scalefac_compress % 36) % 6;
slen[3] = 0;
nsfb = nsfb_table[3][index];
}
else if (scalefac_compress < 244) {
scalefac_compress -= 180;
@@ -766,24 +774,46 @@ unsigned int III_scalefactors(struct mad_bitptr *ptr, struct channel *channel,
else {
for (sfbi = 16; sfbi < 21; ++sfbi)
channel->scalefac[sfbi] = mad_bit_read(ptr, slen2);
}
channel->scalefac[21] = 0;
}
return mad_bit_length(&start, ptr);
}
/*
+ * The Layer III formula for requantization and scaling is defined by
+ * section 2.4.3.4.7.1 of ISO/IEC 11172-3, as follows:
+ *
+ * long blocks:
+ * xr[i] = sign(is[i]) * abs(is[i])^(4/3) *
+ * 2^((1/4) * (global_gain - 210)) *
+ * 2^-(scalefac_multiplier *
+ * (scalefac_l[sfb] + preflag * pretab[sfb]))
+ *
+ * short blocks:
+ * xr[i] = sign(is[i]) * abs(is[i])^(4/3) *
+ * 2^((1/4) * (global_gain - 210 - 8 * subblock_gain[w])) *
+ * 2^-(scalefac_multiplier * scalefac_s[sfb][w])
+ *
+ * where:
+ * scalefac_multiplier = (scalefac_scale + 1) / 2
+ *
+ * The routines III_exponents() and III_requantize() facilitate this
+ * calculation.
+ */
+
+/*
* NAME: III_exponents()
* DESCRIPTION: calculate scalefactor exponents
*/
static
void III_exponents(struct channel const *channel,
unsigned char const *sfbwidth, signed int exponents[39])
{
signed int gain;
unsigned int scalefac_multiplier, sfbi;
gain = (signed int) channel->global_gain - 210;
scalefac_multiplier = (channel->flags & scalefac_scale) ? 2 : 1;
@@ -847,54 +877,40 @@ void III_exponents(struct channel const *channel,
/*
* NAME: III_requantize()
* DESCRIPTION: requantize one (positive) value
*/
static
mad_fixed_t III_requantize(unsigned int value, signed int exp)
{
mad_fixed_t requantized;
signed int frac;
struct fixedfloat const *power;
- /*
- * long blocks:
- * xr[i] = sign(is[i]) * abs(is[i])^(4/3) *
- * 2^((1/4) * (global_gain - 210)) *
- * 2^-(scalefac_multiplier *
- * (scalefac_l[sfb] + preflag * pretab[sfb]))
- *
- * short blocks:
- * xr[i] = sign(is[i]) * abs(is[i])^(4/3) *
- * 2^((1/4) * (global_gain - 210 - 8 * subblock_gain[w])) *
- * 2^-(scalefac_multiplier * scalefac_s[sfb][w])
- *
- * where:
- * scalefac_multiplier = (scalefac_scale + 1) / 2
- */
-
- frac = exp % 4;
+ frac = exp % 4; /* assumes sign(frac) == sign(exp) */
exp /= 4;
power = &rq_table[value];
requantized = power->mantissa;
exp += power->exponent;
if (exp < 0) {
if (-exp >= sizeof(mad_fixed_t) * CHAR_BIT) {
/* underflow */
requantized = 0;
}
- else
+ else {
+ requantized += 1L << (-exp - 1);
requantized >>= -exp;
+ }
}
else {
if (exp >= 5) {
/* overflow */
# if defined(DEBUG)
fprintf(stderr, "requantize overflow (%f * 2^%d)\n",
mad_f_todouble(requantized), exp);
# endif
requantized = MAD_F_MAX;
}
else
requantized <<= exp;
@@ -1242,105 +1258,102 @@ enum mad_error III_huffdecode(struct mad_bitptr *ptr, mad_fixed_t xr[576],
else if (cachesz + bits_left > 0)
fprintf(stderr, "%d stuffing bits\n", cachesz + bits_left);
# endif
/* rzero */
while (xrptr < &xr[576]) {
xrptr[0] = 0;
xrptr[1] = 0;
xrptr += 2;
}
- return 0;
+ return MAD_ERROR_NONE;
}
# undef MASK
# undef MASK1BIT
/*
* NAME: III_reorder()
* DESCRIPTION: reorder frequency lines of a short block into subband order
*/
static
void III_reorder(mad_fixed_t xr[576], struct channel const *channel,
unsigned char const sfbwidth[39])
{
mad_fixed_t tmp[32][3][6];
- unsigned int sb, l, sfbi, f, w, sbw[3], sw[3];
+ unsigned int sb, l, f, w, sbw[3], sw[3];
/* this is probably wrong for 8000 Hz mixed blocks */
- if (channel->flags & mixed_block_flag)
- sb = 2, sfbi = 3 * 3;
- else
- sb = 0, sfbi = 0;
+ sb = 0;
+ if (channel->flags & mixed_block_flag) {
+ sb = 2;
+
+ l = 0;
+ while (l < 36)
+ l += *sfbwidth++;
+ }
for (w = 0; w < 3; ++w) {
sbw[w] = sb;
sw[w] = 0;
}
- f = sfbwidth[sfbi];
+ f = *sfbwidth++;
w = 0;
for (l = 18 * sb; l < 576; ++l) {
+ if (f-- == 0) {
+ f = *sfbwidth++ - 1;
+ w = (w + 1) % 3;
+ }
+
tmp[sbw[w]][w][sw[w]++] = xr[l];
if (sw[w] == 6) {
sw[w] = 0;
++sbw[w];
}
-
- if (--f == 0) {
- if (++w == 3)
- w = 0;
-
- f = sfbwidth[++sfbi];
- }
}
memcpy(&xr[18 * sb], &tmp[sb], (576 - 18 * sb) * sizeof(mad_fixed_t));
}
/*
* NAME: III_stereo()
* DESCRIPTION: perform joint stereo processing on a granule
*/
static
enum mad_error III_stereo(mad_fixed_t xr[2][576],
struct granule const *granule,
struct mad_header *header,
unsigned char const *sfbwidth)
{
short modes[39];
unsigned int sfbi, l, n, i;
- enum {
- i_stereo = 0x1,
- ms_stereo = 0x2
- };
-
if (granule->ch[0].block_type !=
granule->ch[1].block_type ||
(granule->ch[0].flags & mixed_block_flag) !=
(granule->ch[1].flags & mixed_block_flag))
return MAD_ERROR_BADSTEREO;
for (i = 0; i < 39; ++i)
modes[i] = header->mode_extension;
/* intensity stereo */
- if (header->mode_extension & i_stereo) {
+ if (header->mode_extension & I_STEREO) {
struct channel const *right_ch = &granule->ch[1];
mad_fixed_t const *right_xr = xr[1];
unsigned int is_pos;
header->flags |= MAD_FLAG_I_STEREO;
/* first determine which scalefactor bands are to be processed */
if (right_ch->block_type == 2) {
unsigned int lower, start, max, bound[3], w;
lower = start = max = bound[0] = bound[1] = bound[2] = 0;
@@ -1378,74 +1391,74 @@ enum mad_error III_stereo(mad_fixed_t xr[2][576],
right_xr += n;
l += n;
w = (w + 1) % 3;
}
if (max)
lower = start;
/* long blocks */
for (i = 0; i < lower; ++i)
- modes[i] = header->mode_extension & ~i_stereo;
+ modes[i] = header->mode_extension & ~I_STEREO;
/* short blocks */
w = 0;
for (i = start; i < max; ++i) {
if (i < bound[w])
- modes[i] = header->mode_extension & ~i_stereo;
+ modes[i] = header->mode_extension & ~I_STEREO;
w = (w + 1) % 3;
}
}
else { /* right_ch->block_type != 2 */
unsigned int bound;
bound = 0;
for (sfbi = l = 0; l < 576; l += n) {
n = sfbwidth[sfbi++];
for (i = 0; i < n; ++i) {
if (right_xr[i]) {
bound = sfbi;
break;
}
}
right_xr += n;
}
for (i = 0; i < bound; ++i)
- modes[i] = header->mode_extension & ~i_stereo;
+ modes[i] = header->mode_extension & ~I_STEREO;
}
/* now do the actual processing */
if (header->flags & MAD_FLAG_LSF_EXT) {
unsigned char const *illegal_pos = granule[1].ch[1].scalefac;
mad_fixed_t const *lsf_scale;
/* intensity_scale */
lsf_scale = is_lsf_table[right_ch->scalefac_compress & 0x1];
for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
n = sfbwidth[sfbi];
- if (!(modes[sfbi] & i_stereo))
+ if (!(modes[sfbi] & I_STEREO))
continue;
if (illegal_pos[sfbi]) {
- modes[sfbi] &= ~i_stereo;
+ modes[sfbi] &= ~I_STEREO;
continue;
}
is_pos = right_ch->scalefac[sfbi];
for (i = 0; i < n; ++i) {
register mad_fixed_t left;
left = xr[0][l + i];
if (is_pos == 0)
xr[1][l + i] = left;
@@ -1459,111 +1472,108 @@ enum mad_error III_stereo(mad_fixed_t xr[2][576],
xr[1][l + i] = left;
}
else
xr[1][l + i] = opposite;
}
}
}
}
else { /* !(header->flags & MAD_FLAG_LSF_EXT) */
for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
n = sfbwidth[sfbi];
- if (!(modes[sfbi] & i_stereo))
+ if (!(modes[sfbi] & I_STEREO))
continue;
is_pos = right_ch->scalefac[sfbi];
if (is_pos >= 7) { /* illegal intensity position */
- modes[sfbi] &= ~i_stereo;
+ modes[sfbi] &= ~I_STEREO;
continue;
}
for (i = 0; i < n; ++i) {
register mad_fixed_t left;
left = xr[0][l + i];
xr[0][l + i] = mad_f_mul(left, is_table[ is_pos]);
xr[1][l + i] = mad_f_mul(left, is_table[6 - is_pos]);
}
}
}
}
/* middle/side stereo */
- if (header->mode_extension & ms_stereo) {
+ if (header->mode_extension & MS_STEREO) {
register mad_fixed_t invsqrt2;
header->flags |= MAD_FLAG_MS_STEREO;
invsqrt2 = root_table[3 + -2];
for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
n = sfbwidth[sfbi];
- if (modes[sfbi] != ms_stereo)
+ if (modes[sfbi] != MS_STEREO)
continue;
for (i = 0; i < n; ++i) {
register mad_fixed_t m, s;
m = xr[0][l + i];
s = xr[1][l + i];
xr[0][l + i] = mad_f_mul(m + s, invsqrt2); /* l = (m + s) / sqrt(2) */
xr[1][l + i] = mad_f_mul(m - s, invsqrt2); /* r = (m - s) / sqrt(2) */
}
}
}
- return 0;
+ return MAD_ERROR_NONE;
}
/*
* NAME: III_aliasreduce()
* DESCRIPTION: perform frequency line alias reduction
*/
static
void III_aliasreduce(mad_fixed_t xr[576], int lines)
{
mad_fixed_t const *bound;
int i;
bound = &xr[lines];
for (xr += 18; xr < bound; xr += 18) {
for (i = 0; i < 8; ++i) {
- register mad_fixed_t *aptr, *bptr, a, b;
+ register mad_fixed_t a, b;
register mad_fixed64hi_t hi;
register mad_fixed64lo_t lo;
- aptr = &xr[-1 - i];
- bptr = &xr[ i];
-
- a = *aptr;
- b = *bptr;
+ a = xr[-1 - i];
+ b = xr[ i];
# if defined(ASO_ZEROCHECK)
if (a | b) {
# endif
MAD_F_ML0(hi, lo, a, cs[i]);
MAD_F_MLA(hi, lo, -b, ca[i]);
- *aptr = MAD_F_MLZ(hi, lo);
+ xr[-1 - i] = MAD_F_MLZ(hi, lo);
MAD_F_ML0(hi, lo, b, cs[i]);
MAD_F_MLA(hi, lo, a, ca[i]);
- *bptr = MAD_F_MLZ(hi, lo);
+ xr[ i] = MAD_F_MLZ(hi, lo);
# if defined(ASO_ZEROCHECK)
}
# endif
}
}
}
# if defined(ASO_IMDCT)
void III_imdct_l(mad_fixed_t const [18], mad_fixed_t [36], unsigned int);
# else
/*
* NAME: imdct36
@@ -2132,26 +2142,26 @@ void III_freqinver(mad_fixed_t sample[18][32], unsigned int sb)
}
# else
for (i = 1; i < 18; i += 2)
sample[i][sb] = -sample[i][sb];
# endif
}
/*
* NAME: III_decode()
* DESCRIPTION: decode frame main_data
*/
static
-int III_decode(struct mad_bitptr *ptr, struct mad_frame *frame,
- struct sideinfo *si, unsigned int nch)
+enum mad_error III_decode(struct mad_bitptr *ptr, struct mad_frame *frame,
+ struct sideinfo *si, unsigned int nch)
{
struct mad_header *header = &frame->header;
unsigned int sfreqi, ngr, gr;
{
unsigned int sfreq;
sfreq = header->samplerate;
if (header->flags & MAD_FLAG_MPEG_2_5_EXT)
sfreq *= 2;
/* 48000 => 0, 44100 => 1, 32000 => 2,
@@ -2160,72 +2170,72 @@ int III_decode(struct mad_bitptr *ptr, struct mad_frame *frame,
((sfreq >> 15) & 0x0001) - 8;
if (header->flags & MAD_FLAG_MPEG_2_5_EXT)
sfreqi += 3;
}
/* scalefactors, Huffman decoding, requantization */
ngr = (header->flags & MAD_FLAG_LSF_EXT) ? 1 : 2;
for (gr = 0; gr < ngr; ++gr) {
struct granule *granule = &si->gr[gr];
- unsigned char const *sfbwidth = 0;
+ unsigned char const *sfbwidth[2];
mad_fixed_t xr[2][576];
unsigned int ch;
enum mad_error error;
for (ch = 0; ch < nch; ++ch) {
struct channel *channel = &granule->ch[ch];
unsigned int part2_length;
- sfbwidth = sfbwidth_table[sfreqi].l;
+ sfbwidth[ch] = sfbwidth_table[sfreqi].l;
if (channel->block_type == 2) {
- sfbwidth = (channel->flags & mixed_block_flag) ?
+ sfbwidth[ch] = (channel->flags & mixed_block_flag) ?
sfbwidth_table[sfreqi].m : sfbwidth_table[sfreqi].s;
}
if (header->flags & MAD_FLAG_LSF_EXT) {
part2_length = III_scalefactors_lsf(ptr, channel,
ch == 0 ? 0 : &si->gr[1].ch[1],
header->mode_extension);
}
else {
part2_length = III_scalefactors(ptr, channel, &si->gr[0].ch[ch],
gr == 0 ? 0 : si->scfsi[ch]);
}
- error = III_huffdecode(ptr, xr[ch], channel, sfbwidth, part2_length);
+ error = III_huffdecode(ptr, xr[ch], channel, sfbwidth[ch], part2_length);
if (error)
return error;
}
/* joint stereo processing */
if (header->mode == MAD_MODE_JOINT_STEREO && header->mode_extension) {
- error = III_stereo(xr, granule, header, sfbwidth);
+ error = III_stereo(xr, granule, header, sfbwidth[0]);
if (error)
return error;
}
/* reordering, alias reduction, IMDCT, overlap-add, frequency inversion */
for (ch = 0; ch < nch; ++ch) {
struct channel const *channel = &granule->ch[ch];
mad_fixed_t (*sample)[32] = &frame->sbsample[ch][18 * gr];
unsigned int sb, l, i, sblimit;
mad_fixed_t output[36];
if (channel->block_type == 2) {
- III_reorder(xr[ch], channel, sfbwidth_table[sfreqi].s);
+ III_reorder(xr[ch], channel, sfbwidth[ch]);
# if !defined(OPT_STRICT)
/*
* According to ISO/IEC 11172-3, "Alias reduction is not applied for
* granules with block_type == 2 (short block)." However, other
* sources suggest alias reduction should indeed be performed on the
* lower two subbands of mixed blocks. Most other implementations do
* this, so by default we will too.
*/
if (channel->flags & mixed_block_flag)
III_aliasreduce(xr[ch], 36);
# endif
@@ -2291,25 +2301,25 @@ int III_decode(struct mad_bitptr *ptr, struct mad_frame *frame,
/* remaining (zero) subbands */
for (sb = sblimit; sb < 32; ++sb) {
III_overlap_z((*frame->overlap)[ch][sb], sample, sb);
if (sb & 1)
III_freqinver(sample, sb);
}
}
}
- return 0;
+ return MAD_ERROR_NONE;
}
/*
* NAME: layer->III()
* DESCRIPTION: decode a single Layer III frame
*/
int mad_layer_III(struct mad_stream *stream, struct mad_frame *frame)
{
struct mad_header *header = &frame->header;
unsigned int nch, priv_bitlen, next_md_begin = 0;
unsigned int si_len, data_bitlen, md_len;
unsigned int frame_space, frame_used, frame_free;