-rw-r--r-- | libopie/oprocess.h | 8 |
1 files changed, 7 insertions, 1 deletions
diff --git a/libopie/oprocess.h b/libopie/oprocess.h index bf5fe0e..f2853b0 100644 --- a/libopie/oprocess.h +++ b/libopie/oprocess.h @@ -1,383 +1,389 @@ /* This file is part of the KDE libraries Copyright (C) 1997 Christian Czezakte (e9025461@student.tuwien.ac.at) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // // KPROCESS -- A class for handling child processes in KDE without // having to take care of Un*x specific implementation details // // version 0.3.1, Jan 8th 1998 // // (C) Christian Czezatke // e9025461@student.tuwien.ac.at // Ported by Holger Freyther to the Open Palmtop Integrated Environment // #ifndef __kprocess_h__ #define __kprocess_h__ #include <sys/types.h> // for pid_t #include <sys/wait.h> #include <signal.h> #include <unistd.h> #include <qvaluelist.h> #include <qcstring.h> #include <qobject.h> class QSocketNotifier; class OProcessPrivate; /** * Child process invocation, monitoring and control. * * @sect General usage and features * - *This class allows a KDE application to start child processes without having + *This class allows a KDE and OPIE application to start child processes without having *to worry about UN*X signal handling issues and zombie process reaping. * *@see KProcIO * *Basically, this class distinguishes three different ways of running *child processes: * *@li OProcess::DontCare -- The child process is invoked and both the child *process and the parent process continue concurrently. * *Starting a DontCare child process means that the application is *not interested in any notification to determine whether the *child process has already exited or not. * *@li OProcess::NotifyOnExit -- The child process is invoked and both the *child and the parent process run concurrently. * *When the child process exits, the OProcess instance *corresponding to it emits the Qt signal @ref processExited(). * *Since this signal is @em not emitted from within a UN*X *signal handler, arbitrary function calls can be made. * *Be aware: When the OProcess objects gets destructed, the child *process will be killed if it is still running! *This means in particular, that you cannot use a OProcess on the stack *with OProcess::NotifyOnExit. * *@li OProcess::Block -- The child process starts and the parent process *is suspended until the child process exits. (@em Really not recommended *for programs with a GUI.) * *OProcess also provides several functions for determining the exit status *and the pid of the child process it represents. * *Furthermore it is possible to supply command-line arguments to the process *in a clean fashion (no null -- terminated stringlists and such...) * *A small usage example: *<pre> *OProcess *proc = new OProcess; * **proc << "my_executable"; **proc << "These" << "are" << "the" << "command" << "line" << "args"; *QApplication::connect(proc, SIGNAL(processExited(OProcess *)), * pointer_to_my_object, SLOT(my_objects_slot(OProcess *))); *proc->start(); *</pre> * *This will start "my_executable" with the commandline arguments "These"... * *When the child process exits, the respective Qt signal will be emitted. * *@sect Communication with the child process * *OProcess supports communication with the child process through *stdin/stdout/stderr. * *The following functions are provided for getting data from the child *process or sending data to the child's stdin (For more information, *have a look at the documentation of each function): * *@li bool @ref writeStdin(char *buffer, int buflen); *@li -- Transmit data to the child process's stdin. * *@li bool @ref closeStdin(); *@li -- Closes the child process's stdin (which causes it to see an feof(stdin)). *Returns false if you try to close stdin for a process that has been started *without a communication channel to stdin. * *@li bool @ref closeStdout(); *@li -- Closes the child process's stdout. *Returns false if you try to close stdout for a process that has been started *without a communication channel to stdout. * *@li bool @ref closeStderr(); *@li -- Closes the child process's stderr. *Returns false if you try to close stderr for a process that has been started *without a communication channel to stderr. * * *@sect QT signals: * *@li void @ref receivedStdout(OProcess *proc, char *buffer, int buflen); *@li void @ref receivedStderr(OProcess *proc, char *buffer, int buflen); *@li -- Indicates that new data has arrived from either the *child process's stdout or stderr. * *@li void @ref wroteStdin(OProcess *proc); *@li -- Indicates that all data that has been sent to the child process *by a prior call to @ref writeStdin() has actually been transmitted to the *client . * *@author Christian Czezakte e9025461@student.tuwien.ac.at * * **/ class OProcess : public QObject { Q_OBJECT public: /** * Modes in which the communication channel can be opened. * * If communication for more than one channel is required, * the values have to be or'ed together, for example to get * communication with stdout as well as with stdin, you would * specify @p Stdin @p | @p Stdout * * If @p NoRead is specified in conjunction with @p Stdout, * no data is actually read from @p Stdout but only * the signal @ref childOutput(int fd) is emitted. */ enum Communication { NoCommunication = 0, Stdin = 1, Stdout = 2, Stderr = 4, AllOutput = 6, All = 7, NoRead }; /** * Run-modes for a child process. */ enum RunMode { /** * The application does not receive notifications from the subprocess when * it is finished or aborted. */ DontCare, /** * The application is notified when the subprocess dies. */ NotifyOnExit, /** * The application is suspended until the started process is finished. */ Block }; /** * Constructor */ OProcess(QObject *parent = 0, const char *name = 0); + /** + * Constructor + */ OProcess(const QString &arg0, QObject *parent = 0, const char *name = 0); + /** + * Constructor + */ OProcess(const QStringList &args, QObject *parent = 0, const char *name = 0); /** *Destructor: * * If the process is running when the destructor for this class * is called, the child process is killed with a SIGKILL, but * only if the run mode is not of type @p DontCare. * Processes started as @p DontCare keep running anyway. */ virtual ~OProcess(); /** @deprecated The use of this function is now deprecated. -- Please use the "operator<<" instead of "setExecutable". Sets the executable to be started with this OProcess object. Returns false if the process is currently running (in that case the executable remains unchanged.) @see operator<< */ bool setExecutable(const QString& proc); /** * Sets the executable and the command line argument list for this process. * * For example, doing an "ls -l /usr/local/bin" can be achieved by: * <pre> * OProcess p; * ... * p << "ls" << "-l" << "/usr/local/bin" * </pre> * **/ OProcess &operator<<(const QString& arg); /** * Similar to previous method, takes a char *, supposed to be in locale 8 bit already. */ OProcess &operator<<(const char * arg); /** * Similar to previous method, takes a QCString, supposed to be in locale 8 bit already. */ OProcess &operator<<(const QCString & arg); /** * Sets the executable and the command line argument list for this process, * in a single method call, or add a list of arguments. **/ OProcess &operator<<(const QStringList& args); /** * Clear a command line argument list that has been set by using * the "operator<<". */ void clearArguments(); /** * Starts the process. * For a detailed description of the * various run modes and communication semantics, have a look at the * general description of the OProcess class. * * The following problems could cause this function to * return false: * * @li The process is already running. * @li The command line argument list is empty. * @li The starting of the process failed (could not fork). * @li The executable was not found. * * @param comm Specifies which communication links should be * established to the child process (stdin/stdout/stderr). By default, * no communication takes place and the respective communication * signals will never get emitted. * * @return true on success, false on error * (see above for error conditions) **/ virtual bool start(RunMode runmode = NotifyOnExit, Communication comm = NoCommunication); /** * Stop the process (by sending it a signal). * * @param signo The signal to send. The default is SIGTERM. * @return @p true if the signal was delivered successfully. */ virtual bool kill(int signo = SIGTERM); /** @return @p true if the process is (still) considered to be running */ bool isRunning() const; /** Returns the process id of the process. * * If it is called after * the process has exited, it returns the process id of the last * child process that was created by this instance of OProcess. * * Calling it before any child process has been started by this * OProcess instance causes pid() to return 0. **/ pid_t pid() const; /** * Use pid(). * @deprecated */ pid_t getPid() const { return pid(); } /** * Suspend processing of data from stdout of the child process. */ void suspend(); /** * Resume processing of data from stdout of the child process. */ void resume(); /** * @return @p true if the process has already finished and has exited * "voluntarily", ie: it has not been killed by a signal. * * Note that you should check @ref OProcess::exitStatus() to determine * whether the process completed its task successful or not. */ bool normalExit() const; /** * Returns the exit status of the process. * * Please use * @ref OProcess::normalExit() to check whether the process has exited * cleanly (i.e., @ref OProcess::normalExit() returns @p true) before calling * this function because if the process did not exit normally, * it does not have a valid exit status. */ int exitStatus() const; /** * Transmit data to the child process's stdin. * * OProcess::writeStdin may return false in the following cases: * * @li The process is not currently running. * * @li Communication to stdin has not been requested in the @ref start() call. * * @li Transmission of data to the child process by a previous call to * @ref writeStdin() is still in progress. * * Please note that the data is sent to the client asynchronously, * so when this function returns, the data might not have been * processed by the child process. * * If all the data has been sent to the client, the signal * @ref wroteStdin() will be emitted. * * Please note that you must not free "buffer" or call @ref writeStdin() * again until either a @ref wroteStdin() signal indicates that the * data has been sent or a @ref processHasExited() signal shows that * the child process is no longer alive... **/ bool writeStdin(const char *buffer, int buflen); void flushStdin(); /** * This causes the stdin file descriptor of the child process to be * closed indicating an "EOF" to the child. * * @return @p false if no communication to the process's stdin * had been specified in the call to @ref start(). */ bool closeStdin(); /** * This causes the stdout file descriptor of the child process to be * closed. * * @return @p false if no communication to the process's stdout * had been specified in the call to @ref start(). */ bool closeStdout(); |