author | Giulio Cesare Solaroli <giulio.cesare@clipperz.com> | 2011-10-02 23:56:18 (UTC) |
---|---|---|
committer | Giulio Cesare Solaroli <giulio.cesare@clipperz.com> | 2011-10-02 23:56:18 (UTC) |
commit | ef68436ac04da078ffdcacd7e1f785473a303d45 (patch) (side-by-side diff) | |
tree | c403752d66a2c4775f00affd4fa8431b29c5b68c /frontend/beta/js/Clipperz/Crypto | |
parent | 597ecfbc0249d83e1b856cbd558340c01237a360 (diff) | |
download | clipperz-ef68436ac04da078ffdcacd7e1f785473a303d45.zip clipperz-ef68436ac04da078ffdcacd7e1f785473a303d45.tar.gz clipperz-ef68436ac04da078ffdcacd7e1f785473a303d45.tar.bz2 |
First version of the newly restructured repository
Diffstat (limited to 'frontend/beta/js/Clipperz/Crypto') (more/less context) (ignore whitespace changes)
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/AES.js | 836 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/Base.js | 1852 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/BigInt.js | 1760 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/BigInt_scoped.js | 1649 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/ECC.js | 960 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Curve.js | 461 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/FiniteField.js | 526 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Point.js | 67 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Value.js | 377 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/PRNG.js | 854 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/RSA.js | 151 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/SHA.js | 296 | ||||
-rw-r--r-- | frontend/beta/js/Clipperz/Crypto/SRP.js | 331 |
13 files changed, 10120 insertions, 0 deletions
diff --git a/frontend/beta/js/Clipperz/Crypto/AES.js b/frontend/beta/js/Clipperz/Crypto/AES.js new file mode 100644 index 0000000..a60df5c --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/AES.js @@ -0,0 +1,836 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.AES depends on Clipperz.ByteArray!"; +} + +// Dependency commented to avoid a circular reference +//try { if (typeof(Clipperz.Crypto.PRNG) == 'undefined') { throw ""; }} catch (e) { +// throw "Clipperz.Crypto.AES depends on Clipperz.Crypto.PRNG!"; +//} + +if (typeof(Clipperz.Crypto.AES) == 'undefined') { Clipperz.Crypto.AES = {}; } + +//############################################################################# + +Clipperz.Crypto.AES.DeferredExecutionContext = function(args) { + args = args || {}; + + this._key = args.key; + this._message = args.message; + this._result = args.message.clone(); + this._nonce = args.nonce; + this._messageLength = this._message.length(); + + this._messageArray = this._message.arrayValues(); + this._resultArray = this._result.arrayValues(); + this._nonceArray = this._nonce.arrayValues(); + + this._executionStep = 0; + + return this; +} + +Clipperz.Crypto.AES.DeferredExecutionContext.prototype = MochiKit.Base.update(null, { + + 'key': function() { + return this._key; + }, + + 'message': function() { + return this._message; + }, + + 'messageLength': function() { + return this._messageLength; + }, + + 'result': function() { + return new Clipperz.ByteArray(this.resultArray()); + }, + + 'nonce': function() { + return this._nonce; + }, + + 'messageArray': function() { + return this._messageArray; + }, + + 'resultArray': function() { + return this._resultArray; + }, + + 'nonceArray': function() { + return this._nonceArray; + }, + + 'elaborationChunkSize': function() { + return Clipperz.Crypto.AES.DeferredExecution.chunkSize; + }, + + 'executionStep': function() { + return this._executionStep; + }, + + 'setExecutionStep': function(aValue) { + this._executionStep = aValue; + }, + + 'pause': function(aValue) { + return MochiKit.Async.wait(Clipperz.Crypto.AES.DeferredExecution.pauseTime, aValue); + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" + +}); + +//############################################################################# + +Clipperz.Crypto.AES.Key = function(args) { + args = args || {}; + + this._key = args.key; + this._keySize = args.keySize || this.key().length(); + + if (this.keySize() == 128/8) { + this._b = 176; + this._numberOfRounds = 10; + } else if (this.keySize() == 256/8) { + this._b = 240; + this._numberOfRounds = 14; + } else { + MochiKit.Logging.logError("AES unsupported key size: " + (this.keySize() * 8) + " bits"); + throw Clipperz.Crypto.AES.exception.UnsupportedKeySize; + } + + this._stretchedKey = null; + + return this; +} + +Clipperz.Crypto.AES.Key.prototype = MochiKit.Base.update(null, { + + 'asString': function() { + return "Clipperz.Crypto.AES.Key (" + this.key().toHexString() + ")"; + }, + + //----------------------------------------------------------------------------- + + 'key': function() { + return this._key; + }, + + 'keySize': function() { + return this._keySize; + }, + + 'b': function() { + return this._b; + }, + + 'numberOfRounds': function() { + return this._numberOfRounds; + }, + //========================================================================= + + 'keyScheduleCore': function(aWord, aRoundConstantsIndex) { + var result; + var sbox; + + sbox = Clipperz.Crypto.AES.sbox(); + + result = [ sbox[aWord[1]] ^ Clipperz.Crypto.AES.roundConstants()[aRoundConstantsIndex], + sbox[aWord[2]], + sbox[aWord[3]], + sbox[aWord[0]] ]; + + return result; + }, + + //----------------------------------------------------------------------------- + + 'xorWithPreviousStretchValues': function(aKey, aWord, aPreviousWordIndex) { + var result; + var i,c; + + result = []; + c = 4; + for (i=0; i<c; i++) { + result[i] = aWord[i] ^ aKey.byteAtIndex(aPreviousWordIndex + i); + } + + return result; + }, + + //----------------------------------------------------------------------------- + + 'sboxShakeup': function(aWord) { + var result; + var sbox; + var i,c; + + result = []; + sbox = Clipperz.Crypto.AES.sbox(); + c =4; + for (i=0; i<c; i++) { + result[i] = sbox[aWord[i]]; + } + + return result; + }, + + //----------------------------------------------------------------------------- + + 'stretchKey': function(aKey) { + var currentWord; + var keyLength; + var previousStretchIndex; + var i,c; + + keyLength = aKey.length(); + previousStretchIndex = keyLength - this.keySize(); + + currentWord = [ aKey.byteAtIndex(keyLength - 4), + aKey.byteAtIndex(keyLength - 3), + aKey.byteAtIndex(keyLength - 2), + aKey.byteAtIndex(keyLength - 1) ]; + currentWord = this.keyScheduleCore(currentWord, keyLength / this.keySize()); + + if (this.keySize() == 256/8) { + c = 8; + } else if (this.keySize() == 128/8){ + c = 4; + } + + for (i=0; i<c; i++) { + if (i == 4) { + // fifth streatch word + currentWord = this.sboxShakeup(currentWord); + } + + currentWord = this.xorWithPreviousStretchValues(aKey, currentWord, previousStretchIndex + (i*4)); + aKey.appendBytes(currentWord); + } + + return aKey; + }, + + //----------------------------------------------------------------------------- + + 'stretchedKey': function() { + if (this._stretchedKey == null) { + var stretchedKey; + + stretchedKey = this.key().clone(); + + while (stretchedKey.length() < this.keySize()) { + stretchedKey.appendByte(0); + } + + while (stretchedKey.length() < this.b()) { + stretchedKey = this.stretchKey(stretchedKey); + } + + this._stretchedKey = stretchedKey.split(0, this.b()); + } + + return this._stretchedKey; + }, + + //========================================================================= + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + +Clipperz.Crypto.AES.State = function(args) { + args = args || {}; + + this._data = args.block; + this._key = args.key; + + return this; +} + +Clipperz.Crypto.AES.State.prototype = MochiKit.Base.update(null, { + + 'key': function() { + return this._key; + }, + + //----------------------------------------------------------------------------- + + 'data': function() { + return this._data; + }, + + 'setData': function(aValue) { + this._data = aValue; + }, + + //========================================================================= + + 'addRoundKey': function(aRoundNumber) { + // each byte of the state is combined with the round key; each round key is derived from the cipher key using a key schedule. + var data; + var stretchedKey; + var firstStretchedKeyIndex; + var i,c; + + data = this.data(); + stretchedKey = this.key().stretchedKey(); + firstStretchedKeyIndex = aRoundNumber * (128/8); + c = 128/8; + for (i=0; i<c; i++) { + data[i] = data[i] ^ stretchedKey.byteAtIndex(firstStretchedKeyIndex + i); + } + }, + + //----------------------------------------------------------------------------- + + 'subBytes': function() { + // a non-linear substitution step where each byte is replaced with another according to a lookup table. + var i,c; + var data; + var sbox; + + data = this.data(); + sbox = Clipperz.Crypto.AES.sbox(); + + c = 16; + for (i=0; i<c; i++) { + data[i] = sbox[data[i]]; + } + }, + + //----------------------------------------------------------------------------- + + 'shiftRows': function() { + // a transposition step where each row of the state is shifted cyclically a certain number of steps. + var newValue; + var data; + var shiftMapping; + var i,c; + + newValue = new Array(16); + data = this.data(); + shiftMapping = Clipperz.Crypto.AES.shiftRowMapping(); +// [0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11]; + c = 16; + for (i=0; i<c; i++) { + newValue[i] = data[shiftMapping[i]]; + } + for (i=0; i<c; i++) { + data[i] = newValue[i]; + } + }, + + //----------------------------------------------------------------------------- +/* + 'mixColumnsWithValues': function(someValues) { + var result; + var a; + var i,c; + + c = 4; + result = []; + a = []; + for (i=0; i<c; i++) { + a[i] = []; + a[i][1] = someValues[i] + if ((a[i][1] & 0x80) == 0x80) { + a[i][2] = (a[i][1] << 1) ^ 0x11b; + } else { + a[i][2] = a[i][1] << 1; + } + + a[i][3] = a[i][2] ^ a[i][1]; + } + + for (i=0; i<c; i++) { + var x; + + x = Clipperz.Crypto.AES.mixColumnsMatrix()[i]; + result[i] = a[0][x[0]] ^ a[1][x[1]] ^ a[2][x[2]] ^ a[3][x[3]]; + } + + return result; + }, + + 'mixColumns': function() { + // a mixing operation which operates on the columns of the state, combining the four bytes in each column using a linear transformation. + var data; + var i, c; + + data = this.data(); + c = 4; + for(i=0; i<c; i++) { + var blockIndex; + var mixedValues; + + blockIndex = i * 4; + mixedValues = this.mixColumnsWithValues([ data[blockIndex + 0], + data[blockIndex + 1], + data[blockIndex + 2], + data[blockIndex + 3]]); + data[blockIndex + 0] = mixedValues[0]; + data[blockIndex + 1] = mixedValues[1]; + data[blockIndex + 2] = mixedValues[2]; + data[blockIndex + 3] = mixedValues[3]; + } + }, +*/ + + 'mixColumns': function() { + // a mixing operation which operates on the columns of the state, combining the four bytes in each column using a linear transformation. + var data; + var i, c; + var a_1; + var a_2; + + a_1 = new Array(4); + a_2 = new Array(4); + + data = this.data(); + c = 4; + for(i=0; i<c; i++) { + var blockIndex; + var ii, cc; + + blockIndex = i * 4; + + cc = 4; + for (ii=0; ii<cc; ii++) { + var value; + + value = data[blockIndex + ii]; + a_1[ii] = value; + a_2[ii] = (value & 0x80) ? ((value << 1) ^ 0x011b) : (value << 1); + } + + data[blockIndex + 0] = a_2[0] ^ a_1[1] ^ a_2[1] ^ a_1[2] ^ a_1[3]; + data[blockIndex + 1] = a_1[0] ^ a_2[1] ^ a_1[2] ^ a_2[2] ^ a_1[3]; + data[blockIndex + 2] = a_1[0] ^ a_1[1] ^ a_2[2] ^ a_1[3] ^ a_2[3]; + data[blockIndex + 3] = a_1[0] ^ a_2[0] ^ a_1[1] ^ a_1[2] ^ a_2[3]; + } + }, + + //========================================================================= + + 'spinRound': function(aRoundNumber) { + this.addRoundKey(aRoundNumber); + this.subBytes(); + this.shiftRows(); + this.mixColumns(); + }, + + 'spinLastRound': function() { + this.addRoundKey(this.key().numberOfRounds() - 1); + this.subBytes(); + this.shiftRows(); + this.addRoundKey(this.key().numberOfRounds()); + }, + + //========================================================================= + + 'encrypt': function() { + var i,c; + + c = this.key().numberOfRounds() - 1; + for (i=0; i<c; i++) { + this.spinRound(i); + } + + this.spinLastRound(); + }, + + //========================================================================= + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + +Clipperz.Crypto.AES.VERSION = "0.1"; +Clipperz.Crypto.AES.NAME = "Clipperz.Crypto.AES"; + +MochiKit.Base.update(Clipperz.Crypto.AES, { + +// http://www.cs.eku.edu/faculty/styer/460/Encrypt/JS-AES.html +// http://en.wikipedia.org/wiki/Advanced_Encryption_Standard +// http://en.wikipedia.org/wiki/Rijndael_key_schedule +// http://en.wikipedia.org/wiki/Rijndael_S-box + + '__repr__': function () { + return "[" + this.NAME + " " + this.VERSION + "]"; + }, + + 'toString': function () { + return this.__repr__(); + }, + + //============================================================================= + + '_sbox': null, + 'sbox': function() { + if (Clipperz.Crypto.AES._sbox == null) { + Clipperz.Crypto.AES._sbox = [ +0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, +0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, +0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, +0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, +0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, +0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, +0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, +0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, +0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, +0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, +0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, +0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, +0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, +0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, +0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, +0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 + ]; + } + + return Clipperz.Crypto.AES._sbox; + }, + + //----------------------------------------------------------------------------- + // + // 0 4 8 12 0 4 8 12 + // 1 5 9 13 => 5 9 13 1 + // 2 6 10 14 10 14 2 6 + // 3 7 11 15 15 3 7 11 + // + '_shiftRowMapping': null, + 'shiftRowMapping': function() { + if (Clipperz.Crypto.AES._shiftRowMapping == null) { + Clipperz.Crypto.AES._shiftRowMapping = [0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11]; + } + + return Clipperz.Crypto.AES._shiftRowMapping; + }, + + //----------------------------------------------------------------------------- + + '_mixColumnsMatrix': null, + 'mixColumnsMatrix': function() { + if (Clipperz.Crypto.AES._mixColumnsMatrix == null) { + Clipperz.Crypto.AES._mixColumnsMatrix = [ [2, 3, 1 ,1], + [1, 2, 3, 1], + [1, 1, 2, 3], + [3, 1, 1, 2] ]; + } + + return Clipperz.Crypto.AES._mixColumnsMatrix; + }, + + '_roundConstants': null, + 'roundConstants': function() { + if (Clipperz.Crypto.AES._roundConstants == null) { + Clipperz.Crypto.AES._roundConstants = [ , 1, 2, 4, 8, 16, 32, 64, 128, 27, 54, 108, 216, 171, 77, 154]; +// Clipperz.Crypto.AES._roundConstants = [ , 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a]; + } + + return Clipperz.Crypto.AES._roundConstants; + }, + + //============================================================================= + + 'incrementNonce': function(aNonce) { +//Clipperz.Profile.start("Clipperz.Crypto.AES.incrementNonce"); + var i; + var done; + + done = false; + i = aNonce.length - 1; + + while ((i>=0) && (done == false)) { + var currentByteValue; + + currentByteValue = aNonce[i]; + + if (currentByteValue == 0xff) { + aNonce[i] = 0; + if (i>= 0) { + i --; + } else { + done = true; + } + } else { + aNonce[i] = currentByteValue + 1; + done = true; + } + } +//Clipperz.Profile.stop("Clipperz.Crypto.AES.incrementNonce"); + }, + + //----------------------------------------------------------------------------- + + 'encryptBlock': function(aKey, aBlock) { + var result; + var state; + + state = new Clipperz.Crypto.AES.State({block:aBlock, key:aKey}); +//is(state.data(), 'before'); + state.encrypt(); + result = state.data(); + + return result; + }, + + //----------------------------------------------------------------------------- + + 'encryptBlocks': function(aKey, aMessage, aNonce) { + var result; + var nonce; + var self; + var messageIndex; + var messageLength; + var blockSize; + + self = Clipperz.Crypto.AES; + blockSize = 128/8; + messageLength = aMessage.length; + nonce = aNonce; + + result = aMessage; + messageIndex = 0; + while (messageIndex < messageLength) { + var encryptedBlock; + var i,c; + + self.incrementNonce(nonce); + encryptedBlock = self.encryptBlock(aKey, nonce); + + if ((messageLength - messageIndex) > blockSize) { + c = blockSize; + } else { + c = messageLength - messageIndex; + } + + for (i=0; i<c; i++) { + result[messageIndex + i] = result[messageIndex + i] ^ encryptedBlock[i]; + } + + messageIndex += blockSize; + } + + return result; + }, + + //----------------------------------------------------------------------------- + + 'encrypt': function(aKey, someData, aNonce) { + var result; + var nonce; + var encryptedData; + var key; + + key = new Clipperz.Crypto.AES.Key({key:aKey}); + nonce = aNonce ? aNonce.clone() : Clipperz.Crypto.PRNG.defaultRandomGenerator().getRandomBytes(128/8); + + encryptedData = Clipperz.Crypto.AES.encryptBlocks(key, someData.arrayValues(), nonce.arrayValues()); + + result = nonce.appendBytes(encryptedData); + + return result; + }, + + //----------------------------------------------------------------------------- + + 'decrypt': function(aKey, someData) { + var result; + var nonce; + var encryptedData; + var decryptedData; + var dataIterator; + var key; + + key = new Clipperz.Crypto.AES.Key({key:aKey}); + + encryptedData = someData.arrayValues(); + nonce = encryptedData.slice(0, (128/8)); + encryptedData = encryptedData.slice(128/8); + decryptedData = Clipperz.Crypto.AES.encryptBlocks(key, encryptedData, nonce); + + result = new Clipperz.ByteArray(decryptedData); + + return result; + }, + + //============================================================================= + + 'deferredEncryptExecutionChunk': function(anExecutionContext) { + var result; + var nonce; + var self; + var messageIndex; + var messageLength; + var blockSize; + var executionLimit; + + self = Clipperz.Crypto.AES; + blockSize = 128/8; + messageLength = anExecutionContext.messageArray().length; + nonce = anExecutionContext.nonceArray(); + result = anExecutionContext.resultArray(); + + messageIndex = anExecutionContext.executionStep(); + executionLimit = messageIndex + anExecutionContext.elaborationChunkSize(); + executionLimit = Math.min(executionLimit, messageLength); + + while (messageIndex < executionLimit) { + var encryptedBlock; + var i,c; + + self.incrementNonce(nonce); + encryptedBlock = self.encryptBlock(anExecutionContext.key(), nonce); + + if ((executionLimit - messageIndex) > blockSize) { + c = blockSize; + } else { + c = executionLimit - messageIndex; + } + + for (i=0; i<c; i++) { + result[messageIndex + i] = result[messageIndex + i] ^ encryptedBlock[i]; + } + + messageIndex += blockSize; + } + anExecutionContext.setExecutionStep(messageIndex); + + return anExecutionContext; + }, + + //----------------------------------------------------------------------------- + + 'deferredEncryptBlocks': function(anExecutionContext) { + var deferredResult; + var messageSize; + var i,c; + var now; + + messageSize = anExecutionContext.messageLength(); + + deferredResult = new MochiKit.Async.Deferred(); +//deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("Clipperz.Crypto.AES.deferredEncryptBlocks - START: " + res); return res;}); +// deferredResult.addCallback(MochiKit.Base.method(anExecutionContext, 'pause')); + + c = Math.ceil(messageSize / anExecutionContext.elaborationChunkSize()); + for (i=0; i<c; i++) { +//deferredResult.addBoth(function(res) {now = new Date(); return res;}); +//deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("Clipperz.Crypto.AES.deferredEncryptBlocks - : (" + i + ") - " + res); return res;}); + deferredResult.addCallback(Clipperz.Crypto.AES.deferredEncryptExecutionChunk); +//deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("[" + (new Date() - now) + "]Clipperz.Crypto.AES.deferredEncryptBlocks"); return res;}); +//deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("Clipperz.Crypto.AES.deferredEncryptBlocks - : (" + i + ") -- " + res); return res;}); + deferredResult.addCallback(MochiKit.Base.method(anExecutionContext, 'pause')); +//deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("Clipperz.Crypto.AES.deferredEncryptBlocks - : (" + i + ") --- " + res); return res;}); + } +//deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("Clipperz.Crypto.AES.deferredEncryptBlocks - END: " + res); return res;}); + + deferredResult.callback(anExecutionContext); + + return deferredResult; + }, + + //----------------------------------------------------------------------------- + + 'deferredEncrypt': function(aKey, someData, aNonce) { + var deferredResult; + var executionContext; + var result; + var nonce; + var key; + + key = new Clipperz.Crypto.AES.Key({key:aKey}); + nonce = aNonce ? aNonce.clone() : Clipperz.Crypto.PRNG.defaultRandomGenerator().getRandomBytes(128/8); + + executionContext = new Clipperz.Crypto.AES.DeferredExecutionContext({key:key, message:someData, nonce:nonce}); + + deferredResult = new MochiKit.Async.Deferred(); +//deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("Clipperz.Crypto.AES.deferredEncrypt - 1: " + res); return res;}); + deferredResult.addCallback(Clipperz.Crypto.AES.deferredEncryptBlocks); +//deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("Clipperz.Crypto.AES.deferredEncrypt - 2: " + res); return res;}); + deferredResult.addCallback(function(anExecutionContext) { + var result; + + result = anExecutionContext.nonce().clone(); + result.appendBytes(anExecutionContext.resultArray()); + + return result; + }); +//deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("Clipperz.Crypto.AES.deferredEncrypt - 3: " + res); return res;}); + deferredResult.callback(executionContext) + + return deferredResult; + }, + + //----------------------------------------------------------------------------- + + 'deferredDecrypt': function(aKey, someData) { + var deferredResult + var nonce; + var message; + var key; + + key = new Clipperz.Crypto.AES.Key({key:aKey}); + nonce = someData.split(0, (128/8)); + message = someData.split(128/8); + executionContext = new Clipperz.Crypto.AES.DeferredExecutionContext({key:key, message:message, nonce:nonce}); + + deferredResult = new MochiKit.Async.Deferred(); + deferredResult.addCallback(Clipperz.Crypto.AES.deferredEncryptBlocks); + deferredResult.addCallback(function(anExecutionContext) { + return anExecutionContext.result(); + }); + deferredResult.callback(executionContext); + + return deferredResult; + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" + +}); + +//############################################################################# + +Clipperz.Crypto.AES.DeferredExecution = { + 'chunkSize': 4096, // 1024 4096 8192 16384 32768; + 'pauseTime': 0.2 +} + +Clipperz.Crypto.AES.exception = { + 'UnsupportedKeySize': new MochiKit.Base.NamedError("Clipperz.Crypto.AES.exception.UnsupportedKeySize") +}; diff --git a/frontend/beta/js/Clipperz/Crypto/Base.js b/frontend/beta/js/Clipperz/Crypto/Base.js new file mode 100644 index 0000000..b69dcc8 --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/Base.js @@ -0,0 +1,1852 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +try { if (typeof(Clipperz.Base) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.Base depends on Clipperz.Base!"; +} + +if (typeof(Clipperz.Crypto) == 'undefined') { Clipperz.Crypto = {}; } +if (typeof(Clipperz.Crypto.Base) == 'undefined') { Clipperz.Crypto.Base = {}; } + +Clipperz.Crypto.Base.VERSION = "0.1"; +Clipperz.Crypto.Base.NAME = "Clipperz.Crypto.Base"; + +//############################################################################# +// Downloaded on March 30, 2006 from http://anmar.eu.org/projects/jssha2/files/jssha2-0.3.zip (jsSha2/sha256.js) +//############################################################################# + +/* A JavaScript implementation of the Secure Hash Algorithm, SHA-256 + * Version 0.3 Copyright Angel Marin 2003-2004 - http://anmar.eu.org/ + * Distributed under the BSD License + * Some bits taken from Paul Johnston's SHA-1 implementation + */ +var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */ +function safe_add (x, y) { + var lsw = (x & 0xFFFF) + (y & 0xFFFF); + var msw = (x >> 16) + (y >> 16) + (lsw >> 16); + return (msw << 16) | (lsw & 0xFFFF); +} +function S (X, n) {return ( X >>> n ) | (X << (32 - n));} +function R (X, n) {return ( X >>> n );} +function Ch(x, y, z) {return ((x & y) ^ ((~x) & z));} +function Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));} +function Sigma0256(x) {return (S(x, 2) ^ S(x, 13) ^ S(x, 22));} +function Sigma1256(x) {return (S(x, 6) ^ S(x, 11) ^ S(x, 25));} +function Gamma0256(x) {return (S(x, 7) ^ S(x, 18) ^ R(x, 3));} +function Gamma1256(x) {return (S(x, 17) ^ S(x, 19) ^ R(x, 10));} +function core_sha256 (m, l) { + var K = new Array(0x428A2F98,0x71374491,0xB5C0FBCF,0xE9B5DBA5,0x3956C25B,0x59F111F1,0x923F82A4,0xAB1C5ED5,0xD807AA98,0x12835B01,0x243185BE,0x550C7DC3,0x72BE5D74,0x80DEB1FE,0x9BDC06A7,0xC19BF174,0xE49B69C1,0xEFBE4786,0xFC19DC6,0x240CA1CC,0x2DE92C6F,0x4A7484AA,0x5CB0A9DC,0x76F988DA,0x983E5152,0xA831C66D,0xB00327C8,0xBF597FC7,0xC6E00BF3,0xD5A79147,0x6CA6351,0x14292967,0x27B70A85,0x2E1B2138,0x4D2C6DFC,0x53380D13,0x650A7354,0x766A0ABB,0x81C2C92E,0x92722C85,0xA2BFE8A1,0xA81A664B,0xC24B8B70,0xC76C51A3,0xD192E819,0xD6990624,0xF40E3585,0x106AA070,0x19A4C116,0x1E376C08,0x2748774C,0x34B0BCB5,0x391C0CB3,0x4ED8AA4A,0x5B9CCA4F,0x682E6FF3,0x748F82EE,0x78A5636F,0x84C87814,0x8CC70208,0x90BEFFFA,0xA4506CEB,0xBEF9A3F7,0xC67178F2); + var HASH = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); + var W = new Array(64); + var a, b, c, d, e, f, g, h, i, j; + var T1, T2; + /* append padding */ + m[l >> 5] |= 0x80 << (24 - l % 32); + m[((l + 64 >> 9) << 4) + 15] = l; + for ( var i = 0; i<m.length; i+=16 ) { + a = HASH[0]; b = HASH[1]; c = HASH[2]; d = HASH[3]; e = HASH[4]; f = HASH[5]; g = HASH[6]; h = HASH[7]; + for ( var j = 0; j<64; j++) { + if (j < 16) W[j] = m[j + i]; + else W[j] = safe_add(safe_add(safe_add(Gamma1256(W[j - 2]), W[j - 7]), Gamma0256(W[j - 15])), W[j - 16]); + T1 = safe_add(safe_add(safe_add(safe_add(h, Sigma1256(e)), Ch(e, f, g)), K[j]), W[j]); + T2 = safe_add(Sigma0256(a), Maj(a, b, c)); + h = g; g = f; f = e; e = safe_add(d, T1); d = c; c = b; b = a; a = safe_add(T1, T2); + } + HASH[0] = safe_add(a, HASH[0]); HASH[1] = safe_add(b, HASH[1]); HASH[2] = safe_add(c, HASH[2]); HASH[3] = safe_add(d, HASH[3]); HASH[4] = safe_add(e, HASH[4]); HASH[5] = safe_add(f, HASH[5]); HASH[6] = safe_add(g, HASH[6]); HASH[7] = safe_add(h, HASH[7]); + } + return HASH; +} +function str2binb (str) { + var bin = Array(); + var mask = (1 << chrsz) - 1; + for(var i = 0; i < str.length * chrsz; i += chrsz) + bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i%32); + return bin; +} +function binb2hex (binarray) { + var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ + var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; + var str = ""; + for (var i = 0; i < binarray.length * 4; i++) { + str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) + hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8 )) & 0xF); + } + return str; +} +function hex_sha256(s){return binb2hex(core_sha256(str2binb(s),s.length * chrsz));} + + + +//############################################################################# +// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (entropy.js) +//############################################################################# + + // Entropy collection utilities + + /* Start by declaring static storage and initialise + the entropy vector from the time we come through + here. */ + + var entropyData = new Array(); // Collected entropy data + var edlen = 0; // Keyboard array data length + + addEntropyTime(); // Start entropy collection with page load time + ce(); // Roll milliseconds into initial entropy + + // Add a byte to the entropy vector + + function addEntropyByte(b) { + entropyData[edlen++] = b; + } + + /* Capture entropy. When the user presses a key or performs + various other events for which we can request + notification, add the time in 255ths of a second to the + entropyData array. The name of the function is short + so it doesn't bloat the form object declarations in + which it appears in various "onXXX" events. */ + + function ce() { + addEntropyByte(Math.floor((((new Date).getMilliseconds()) * 255) / 999)); + } + + // Add a 32 bit quantity to the entropy vector + + function addEntropy32(w) { + var i; + + for (i = 0; i < 4; i++) { + addEntropyByte(w & 0xFF); + w >>= 8; + } + } + + /* Add the current time and date (milliseconds since the epoch, + truncated to 32 bits) to the entropy vector. */ + + function addEntropyTime() { + addEntropy32((new Date()).getTime()); + } + + /* Start collection of entropy from mouse movements. The + argument specifies the number of entropy items to be + obtained from mouse motion, after which mouse motion + will be ignored. Note that you can re-enable mouse + motion collection at any time if not already underway. */ + + var mouseMotionCollect = 0; + var oldMoveHandler; // For saving and restoring mouse move handler in IE4 + + function mouseMotionEntropy(maxsamp) { + if (mouseMotionCollect <= 0) { + mouseMotionCollect = maxsamp; + if ((document.implementation.hasFeature("Events", "2.0")) && + document.addEventListener) { + // Browser supports Document Object Model (DOM) 2 events + document.addEventListener("mousemove", mouseMoveEntropy, false); + } else { + if (document.attachEvent) { + // Internet Explorer 5 and above event model + document.attachEvent("onmousemove", mouseMoveEntropy); + } else { + // Internet Explorer 4 event model + oldMoveHandler = document.onmousemove; + document.onmousemove = mouseMoveEntropy; + } + } +//dump("Mouse enable", mouseMotionCollect); + } + } + + /* Collect entropy from mouse motion events. Note that + this is craftily coded to work with either DOM2 or Internet + Explorer style events. Note that we don't use every successive + mouse movement event. Instead, we XOR the three bytes collected + from the mouse and use that to determine how many subsequent + mouse movements we ignore before capturing the next one. */ + + var mouseEntropyTime = 0; // Delay counter for mouse entropy collection + + function mouseMoveEntropy(e) { + if (!e) { + e = window.event; // Internet Explorer event model + } + if (mouseMotionCollect > 0) { + if (mouseEntropyTime-- <= 0) { + addEntropyByte(e.screenX & 0xFF); + addEntropyByte(e.screenY & 0xFF); + ce(); + mouseMotionCollect--; + mouseEntropyTime = (entropyData[edlen - 3] ^ entropyData[edlen - 2] ^ + entropyData[edlen - 1]) % 19; +//dump("Mouse Move", byteArrayToHex(entropyData.slice(-3))); + } + if (mouseMotionCollect <= 0) { + if (document.removeEventListener) { + document.removeEventListener("mousemove", mouseMoveEntropy, false); + } else if (document.detachEvent) { + document.detachEvent("onmousemove", mouseMoveEntropy); + } else { + document.onmousemove = oldMoveHandler; + } +//dump("Spung!", 0); + } + } + } + + /* Compute a 32 byte key value from the entropy vector. + We compute the value by taking the MD5 sum of the even + and odd bytes respectively of the entropy vector, then + concatenating the two MD5 sums. */ + + function keyFromEntropy() { + var i, k = new Array(32); + + if (edlen == 0) { + alert("Blooie! Entropy vector void at call to keyFromEntropy."); + } +//dump("Entropy bytes", edlen); + + md5_init(); + for (i = 0; i < edlen; i += 2) { + md5_update(entropyData[i]); + } + md5_finish(); + for (i = 0; i < 16; i++) { + k[i] = digestBits[i]; + } + + md5_init(); + for (i = 1; i < edlen; i += 2) { + md5_update(entropyData[i]); + } + md5_finish(); + for (i = 0; i < 16; i++) { + k[i + 16] = digestBits[i]; + } + +//dump("keyFromEntropy", byteArrayToHex(k)); + return k; + } + +//############################################################################# +// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (aesprng.js) +//############################################################################# + + + // AES based pseudorandom number generator + + /* Constructor. Called with an array of 32 byte (0-255) values + containing the initial seed. */ + + function AESprng(seed) { + this.key = new Array(); + this.key = seed; + this.itext = hexToByteArray("9F489613248148F9C27945C6AE62EECA3E3367BB14064E4E6DC67A9F28AB3BD1"); + this.nbytes = 0; // Bytes left in buffer + + this.next = AESprng_next; + this.nextbits = AESprng_nextbits; + this.nextInt = AESprng_nextInt; + this.round = AESprng_round; + + /* Encrypt the initial text with the seed key + three times, feeding the output of the encryption + back into the key for the next round. */ + + bsb = blockSizeInBits; + blockSizeInBits = 256; + var i, ct; + for (i = 0; i < 3; i++) { + this.key = rijndaelEncrypt(this.itext, this.key, "ECB"); + } + + /* Now make between one and four additional + key-feedback rounds, with the number determined + by bits from the result of the first three + rounds. */ + + var n = 1 + (this.key[3] & 2) + (this.key[9] & 1); + for (i = 0; i < n; i++) { + this.key = rijndaelEncrypt(this.itext, this.key, "ECB"); + } + blockSizeInBits = bsb; + } + + function AESprng_round() { + bsb = blockSizeInBits; + blockSizeInBits = 256; + this.key = rijndaelEncrypt(this.itext, this.key, "ECB"); + this.nbytes = 32; + blockSizeInBits = bsb; + } + + // Return next byte from the generator + + function AESprng_next() { + if (this.nbytes <= 0) { + this.round(); + } + return(this.key[--this.nbytes]); + } + + // Return n bit integer value (up to maximum integer size) + + function AESprng_nextbits(n) { + var i, w = 0, nbytes = Math.floor((n + 7) / 8); + + for (i = 0; i < nbytes; i++) { + w = (w << 8) | this.next(); + } + return w & ((1 << n) - 1); + } + + // Return integer between 0 and n inclusive + + function AESprng_nextInt(n) { + var p = 1, nb = 0; + + // Determine smallest p, 2^p > n + // nb = log_2 p + + while (n >= p) { + p <<= 1; + nb++; + } + p--; + + /* Generate values from 0 through n by first generating + values v from 0 to (2^p)-1, then discarding any results v > n. + For the rationale behind this (and why taking + values mod (n + 1) is biased toward smaller values, see + Ferguson and Schneier, "Practical Cryptography", + ISBN 0-471-22357-3, section 10.8). */ + + while (true) { + var v = this.nextbits(nb) & p; + + if (v <= n) { + return v; + } + } + } + +//############################################################################# +// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (md5.js) +//############################################################################# + +/* + * md5.jvs 1.0b 27/06/96 + * + * Javascript implementation of the RSA Data Security, Inc. MD5 + * Message-Digest Algorithm. + * + * Copyright (c) 1996 Henri Torgemane. All Rights Reserved. + * + * Permission to use, copy, modify, and distribute this software + * and its documentation for any purposes and without + * fee is hereby granted provided that this copyright notice + * appears in all copies. + * + * Of course, this soft is provided "as is" without express or implied + * warranty of any kind. + + This version contains some trivial reformatting modifications + by John Walker. + + */ + +function array(n) { + for (i = 0; i < n; i++) { + this[i] = 0; + } + this.length = n; +} + +/* Some basic logical functions had to be rewritten because of a bug in + * Javascript.. Just try to compute 0xffffffff >> 4 with it.. + * Of course, these functions are slower than the original would be, but + * at least, they work! + */ + +function integer(n) { + return n % (0xffffffff + 1); +} + +function shr(a, b) { + a = integer(a); + b = integer(b); + if (a - 0x80000000 >= 0) { + a = a % 0x80000000; + a >>= b; + a += 0x40000000 >> (b - 1); + } else { + a >>= b; + } + return a; +} + +function shl1(a) { + a = a % 0x80000000; + if (a & 0x40000000 == 0x40000000) { + a -= 0x40000000; + a *= 2; + a += 0x80000000; + } else { + a *= 2; + } + return a; +} + +function shl(a, b) { + a = integer(a); + b = integer(b); + for (var i = 0; i < b; i++) { + a = shl1(a); + } + return a; +} + +function and(a, b) { + a = integer(a); + b = integer(b); + var t1 = a - 0x80000000; + var t2 = b - 0x80000000; + if (t1 >= 0) { + if (t2 >= 0) { + return ((t1 & t2) + 0x80000000); + } else { + return (t1 & b); + } + } else { + if (t2 >= 0) { + return (a & t2); + } else { + return (a & b); + } + } +} + +function or(a, b) { + a = integer(a); + b = integer(b); + var t1 = a - 0x80000000; + var t2 = b - 0x80000000; + if (t1 >= 0) { + if (t2 >= 0) { + return ((t1 | t2) + 0x80000000); + } else { + return ((t1 | b) + 0x80000000); + } + } else { + if (t2 >= 0) { + return ((a | t2) + 0x80000000); + } else { + return (a | b); + } + } +} + +function xor(a, b) { + a = integer(a); + b = integer(b); + var t1 = a - 0x80000000; + var t2 = b - 0x80000000; + if (t1 >= 0) { + if (t2 >= 0) { + return (t1 ^ t2); + } else { + return ((t1 ^ b) + 0x80000000); + } + } else { + if (t2 >= 0) { + return ((a ^ t2) + 0x80000000); + } else { + return (a ^ b); + } + } +} + +function not(a) { + a = integer(a); + return 0xffffffff - a; +} + +/* Here begin the real algorithm */ + +var state = new array(4); +var count = new array(2); + count[0] = 0; + count[1] = 0; +var buffer = new array(64); +var transformBuffer = new array(16); +var digestBits = new array(16); + +var S11 = 7; +var S12 = 12; +var S13 = 17; +var S14 = 22; +var S21 = 5; +var S22 = 9; +var S23 = 14; +var S24 = 20; +var S31 = 4; +var S32 = 11; +var S33 = 16; +var S34 = 23; +var S41 = 6; +var S42 = 10; +var S43 = 15; +var S44 = 21; + +function F(x, y, z) { + return or(and(x, y), and(not(x), z)); +} + +function G(x, y, z) { + return or(and(x, z), and(y, not(z))); +} + +function H(x, y, z) { + return xor(xor(x, y), z); +} + +function I(x, y, z) { + return xor(y ,or(x , not(z))); +} + +function rotateLeft(a, n) { + return or(shl(a, n), (shr(a, (32 - n)))); +} + +function FF(a, b, c, d, x, s, ac) { + a = a + F(b, c, d) + x + ac; + a = rotateLeft(a, s); + a = a + b; + return a; +} + +function GG(a, b, c, d, x, s, ac) { + a = a + G(b, c, d) + x + ac; + a = rotateLeft(a, s); + a = a + b; + return a; +} + +function HH(a, b, c, d, x, s, ac) { + a = a + H(b, c, d) + x + ac; + a = rotateLeft(a, s); + a = a + b; + return a; +} + +function II(a, b, c, d, x, s, ac) { + a = a + I(b, c, d) + x + ac; + a = rotateLeft(a, s); + a = a + b; + return a; +} + +function transform(buf, offset) { + var a = 0, b = 0, c = 0, d = 0; + var x = transformBuffer; + + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + + for (i = 0; i < 16; i++) { + x[i] = and(buf[i * 4 + offset], 0xFF); + for (j = 1; j < 4; j++) { + x[i] += shl(and(buf[i * 4 + j + offset] ,0xFF), j * 8); + } + } + + /* Round 1 */ + a = FF( a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ + d = FF( d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ + c = FF( c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ + b = FF( b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ + a = FF( a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ + d = FF( d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ + c = FF( c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ + b = FF( b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ + a = FF( a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ + d = FF( d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ + c = FF( c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ + b = FF( b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ + a = FF( a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ + d = FF( d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ + c = FF( c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ + b = FF( b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ + + /* Round 2 */ + a = GG( a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ + d = GG( d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ + c = GG( c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ + b = GG( b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ + a = GG( a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ + d = GG( d, a, b, c, x[10], S22, 0x2441453); /* 22 */ + c = GG( c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ + b = GG( b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ + a = GG( a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ + d = GG( d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ + c = GG( c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ + b = GG( b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ + a = GG( a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ + d = GG( d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ + c = GG( c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ + b = GG( b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ + + /* Round 3 */ + a = HH( a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ + d = HH( d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ + c = HH( c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ + b = HH( b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ + a = HH( a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ + d = HH( d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ + c = HH( c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ + b = HH( b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ + a = HH( a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ + d = HH( d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ + c = HH( c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ + b = HH( b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */ + a = HH( a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ + d = HH( d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ + c = HH( c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ + b = HH( b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ + + /* Round 4 */ + a = II( a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ + d = II( d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ + c = II( c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ + b = II( b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ + a = II( a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ + d = II( d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ + c = II( c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ + b = II( b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ + a = II( a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ + d = II( d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ + c = II( c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ + b = II( b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ + a = II( a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ + d = II( d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ + c = II( c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ + b = II( b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ + + state[0] += a; + state[1] += b; + state[2] += c; + state[3] += d; + +} + +function md5_init() { + count[0] = count[1] = 0; + state[0] = 0x67452301; + state[1] = 0xefcdab89; + state[2] = 0x98badcfe; + state[3] = 0x10325476; + for (i = 0; i < digestBits.length; i++) { + digestBits[i] = 0; + } +} + +function md5_update(b) { + var index, i; + + index = and(shr(count[0],3) , 0x3F); + if (count[0] < 0xFFFFFFFF - 7) { + count[0] += 8; + } else { + count[1]++; + count[0] -= 0xFFFFFFFF + 1; + count[0] += 8; + } + buffer[index] = and(b, 0xff); + if (index >= 63) { + transform(buffer, 0); + } +} + +function md5_finish() { + var bits = new array(8); + var padding; + var i = 0, index = 0, padLen = 0; + + for (i = 0; i < 4; i++) { + bits[i] = and(shr(count[0], (i * 8)), 0xFF); + } + for (i = 0; i < 4; i++) { + bits[i + 4] = and(shr(count[1], (i * 8)), 0xFF); + } + index = and(shr(count[0], 3), 0x3F); + padLen = (index < 56) ? (56 - index) : (120 - index); + padding = new array(64); + padding[0] = 0x80; + for (i = 0; i < padLen; i++) { + md5_update(padding[i]); + } + for (i = 0; i < 8; i++) { + md5_update(bits[i]); + } + + for (i = 0; i < 4; i++) { + for (j = 0; j < 4; j++) { + digestBits[i * 4 + j] = and(shr(state[i], (j * 8)) , 0xFF); + } + } +} + +/* End of the MD5 algorithm */ + +//############################################################################# +// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (aes.js) +//############################################################################# + + +/* rijndael.js Rijndael Reference Implementation + + This is a modified version of the software described below, + produced in September 2003 by John Walker for use in the + JavsScrypt browser-based encryption package. The principal + changes are replacing the original getRandomBytes function with + one which calls our pseudorandom generator (which must + be instantiated and seeded before the first call on getRandomBytes), + and changing keySizeInBits to 256. Some code not required by the + JavsScrypt application has been commented out. Please see + http://www.fourmilab.ch/javascrypt/ for further information on + JavaScrypt. + + The following is the original copyright and application + information. + + Copyright (c) 2001 Fritz Schneider + + This software is provided as-is, without express or implied warranty. + Permission to use, copy, modify, distribute or sell this software, with or + without fee, for any purpose and by any individual or organization, is hereby + granted, provided that the above copyright notice and this paragraph appear + in all copies. Distribution as a part of an application or binary must + include the above copyright notice in the documentation and/or other materials + provided with the application or distribution. + + As the above disclaimer notes, you are free to use this code however you + want. However, I would request that you send me an email + (fritz /at/ cs /dot/ ucsd /dot/ edu) to say hi if you find this code useful + or instructional. Seeing that people are using the code acts as + encouragement for me to continue development. If you *really* want to thank + me you can buy the book I wrote with Thomas Powell, _JavaScript: + _The_Complete_Reference_ :) + + This code is an UNOPTIMIZED REFERENCE implementation of Rijndael. + If there is sufficient interest I can write an optimized (word-based, + table-driven) version, although you might want to consider using a + compiled language if speed is critical to your application. As it stands, + one run of the monte carlo test (10,000 encryptions) can take up to + several minutes, depending upon your processor. You shouldn't expect more + than a few kilobytes per second in throughput. + + Also note that there is very little error checking in these functions. + Doing proper error checking is always a good idea, but the ideal + implementation (using the instanceof operator and exceptions) requires + IE5+/NS6+, and I've chosen to implement this code so that it is compatible + with IE4/NS4. + + And finally, because JavaScript doesn't have an explicit byte/char data + type (although JavaScript 2.0 most likely will), when I refer to "byte" + in this code I generally mean "32 bit integer with value in the interval + [0,255]" which I treat as a byte. + + See http://www-cse.ucsd.edu/~fritz/rijndael.html for more documentation + of the (very simple) API provided by this code. + + Fritz Schneider + fritz at cs.ucsd.edu + +*/ + + +// Rijndael parameters -- Valid values are 128, 192, or 256 + +var keySizeInBits = 256; +var blockSizeInBits = 128; + +// +// Note: in the following code the two dimensional arrays are indexed as +// you would probably expect, as array[row][column]. The state arrays +// are 2d arrays of the form state[4][Nb]. + + +// The number of rounds for the cipher, indexed by [Nk][Nb] +var roundsArray = [ ,,,,[,,,,10,, 12,, 14],, + [,,,,12,, 12,, 14],, + [,,,,14,, 14,, 14] ]; + +// The number of bytes to shift by in shiftRow, indexed by [Nb][row] +var shiftOffsets = [ ,,,,[,1, 2, 3],,[,1, 2, 3],,[,1, 3, 4] ]; + +// The round constants used in subkey expansion +var Rcon = [ +0x01, 0x02, 0x04, 0x08, 0x10, 0x20, +0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, +0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, +0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, +0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 ]; + +// Precomputed lookup table for the SBox +var SBox = [ + 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, +118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, +114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, +216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, +235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, +179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, +190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, +249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, +188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, +23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, +144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, + 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, +141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, + 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, +181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, +248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, +140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, + 22 ]; + +// Precomputed lookup table for the inverse SBox +var SBoxInverse = [ + 82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215, +251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222, +233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66, +250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73, +109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92, +204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21, + 70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247, +228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2, +193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220, +234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173, + 53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29, + 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75, +198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168, + 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81, +127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160, +224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97, + 23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12, +125 ]; + +// This method circularly shifts the array left by the number of elements +// given in its parameter. It returns the resulting array and is used for +// the ShiftRow step. Note that shift() and push() could be used for a more +// elegant solution, but they require IE5.5+, so I chose to do it manually. + +function cyclicShiftLeft(theArray, positions) { + var temp = theArray.slice(0, positions); + theArray = theArray.slice(positions).concat(temp); + return theArray; +} + +// Cipher parameters ... do not change these +var Nk = keySizeInBits / 32; +var Nb = blockSizeInBits / 32; +var Nr = roundsArray[Nk][Nb]; + +// Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec. + +function xtime(poly) { + poly <<= 1; + return ((poly & 0x100) ? (poly ^ 0x11B) : (poly)); +} + +// Multiplies the two elements of GF(2^8) together and returns the result. +// See the Rijndael spec, but should be straightforward: for each power of +// the indeterminant that has a 1 coefficient in x, add y times that power +// to the result. x and y should be bytes representing elements of GF(2^8) + +function mult_GF256(x, y) { + var bit, result = 0; + + for (bit = 1; bit < 256; bit *= 2, y = xtime(y)) { + if (x & bit) + result ^= y; + } + return result; +} + +// Performs the substitution step of the cipher. State is the 2d array of +// state information (see spec) and direction is string indicating whether +// we are performing the forward substitution ("encrypt") or inverse +// substitution (anything else) + +function byteSub(state, direction) { + var S; + if (direction == "encrypt") // Point S to the SBox we're using + S = SBox; + else + S = SBoxInverse; + for (var i = 0; i < 4; i++) // Substitute for every byte in state + for (var j = 0; j < Nb; j++) + state[i][j] = S[state[i][j]]; +} + +// Performs the row shifting step of the cipher. + +function shiftRow(state, direction) { + for (var i=1; i<4; i++) // Row 0 never shifts + if (direction == "encrypt") + state[i] = cyclicShiftLeft(state[i], shiftOffsets[Nb][i]); + else + state[i] = cyclicShiftLeft(state[i], Nb - shiftOffsets[Nb][i]); + +} + +// Performs the column mixing step of the cipher. Most of these steps can +// be combined into table lookups on 32bit values (at least for encryption) +// to greatly increase the speed. + +function mixColumn(state, direction) { + var b = []; // Result of matrix multiplications + for (var j = 0; j < Nb; j++) { // Go through each column... + for (var i = 0; i < 4; i++) { // and for each row in the column... + if (direction == "encrypt") + b[i] = mult_GF256(state[i][j], 2) ^ // perform mixing + mult_GF256(state[(i+1)%4][j], 3) ^ + state[(i+2)%4][j] ^ + state[(i+3)%4][j]; + else + b[i] = mult_GF256(state[i][j], 0xE) ^ + mult_GF256(state[(i+1)%4][j], 0xB) ^ + mult_GF256(state[(i+2)%4][j], 0xD) ^ + mult_GF256(state[(i+3)%4][j], 9); + } + for (var i = 0; i < 4; i++) // Place result back into column + state[i][j] = b[i]; + } +} + +// Adds the current round key to the state information. Straightforward. + +function addRoundKey(state, roundKey) { + for (var j = 0; j < Nb; j++) { // Step through columns... + state[0][j] ^= (roundKey[j] & 0xFF); // and XOR + state[1][j] ^= ((roundKey[j]>>8) & 0xFF); + state[2][j] ^= ((roundKey[j]>>16) & 0xFF); + state[3][j] ^= ((roundKey[j]>>24) & 0xFF); + } +} + +// This function creates the expanded key from the input (128/192/256-bit) +// key. The parameter key is an array of bytes holding the value of the key. +// The returned value is an array whose elements are the 32-bit words that +// make up the expanded key. + +function keyExpansion(key) { + var expandedKey = new Array(); + var temp; + + // in case the key size or parameters were changed... + Nk = keySizeInBits / 32; + Nb = blockSizeInBits / 32; + Nr = roundsArray[Nk][Nb]; + + for (var j=0; j < Nk; j++) // Fill in input key first + expandedKey[j] = + (key[4*j]) | (key[4*j+1]<<8) | (key[4*j+2]<<16) | (key[4*j+3]<<24); + + // Now walk down the rest of the array filling in expanded key bytes as + // per Rijndael's spec + for (j = Nk; j < Nb * (Nr + 1); j++) { // For each word of expanded key + temp = expandedKey[j - 1]; + if (j % Nk == 0) + temp = ( (SBox[(temp>>8) & 0xFF]) | + (SBox[(temp>>16) & 0xFF]<<8) | + (SBox[(temp>>24) & 0xFF]<<16) | + (SBox[temp & 0xFF]<<24) ) ^ Rcon[Math.floor(j / Nk) - 1]; + else if (Nk > 6 && j % Nk == 4) + temp = (SBox[(temp>>24) & 0xFF]<<24) | + (SBox[(temp>>16) & 0xFF]<<16) | + (SBox[(temp>>8) & 0xFF]<<8) | + (SBox[temp & 0xFF]); + expandedKey[j] = expandedKey[j-Nk] ^ temp; + } + return expandedKey; +} + +// Rijndael's round functions... + +function Round(state, roundKey) { + byteSub(state, "encrypt"); + shiftRow(state, "encrypt"); + mixColumn(state, "encrypt"); + addRoundKey(state, roundKey); +} + +function InverseRound(state, roundKey) { + addRoundKey(state, roundKey); + mixColumn(state, "decrypt"); + shiftRow(state, "decrypt"); + byteSub(state, "decrypt"); +} + +function FinalRound(state, roundKey) { + byteSub(state, "encrypt"); + shiftRow(state, "encrypt"); + addRoundKey(state, roundKey); +} + +function InverseFinalRound(state, roundKey){ + addRoundKey(state, roundKey); + shiftRow(state, "decrypt"); + byteSub(state, "decrypt"); +} + +// encrypt is the basic encryption function. It takes parameters +// block, an array of bytes representing a plaintext block, and expandedKey, +// an array of words representing the expanded key previously returned by +// keyExpansion(). The ciphertext block is returned as an array of bytes. + +function encrypt(block, expandedKey) { + var i; + if (!block || block.length*8 != blockSizeInBits) + return; + if (!expandedKey) + return; + + block = packBytes(block); + addRoundKey(block, expandedKey); + for (i=1; i<Nr; i++) + Round(block, expandedKey.slice(Nb*i, Nb*(i+1))); + FinalRound(block, expandedKey.slice(Nb*Nr)); + return unpackBytes(block); +} + +// decrypt is the basic decryption function. It takes parameters +// block, an array of bytes representing a ciphertext block, and expandedKey, +// an array of words representing the expanded key previously returned by +// keyExpansion(). The decrypted block is returned as an array of bytes. + +function decrypt(block, expandedKey) { + var i; + if (!block || block.length*8 != blockSizeInBits) + return; + if (!expandedKey) + return; + + block = packBytes(block); + InverseFinalRound(block, expandedKey.slice(Nb*Nr)); + for (i = Nr - 1; i>0; i--) + InverseRound(block, expandedKey.slice(Nb*i, Nb*(i+1))); + addRoundKey(block, expandedKey); + return unpackBytes(block); +} + +/* !NEEDED +// This method takes a byte array (byteArray) and converts it to a string by +// applying String.fromCharCode() to each value and concatenating the result. +// The resulting string is returned. Note that this function SKIPS zero bytes +// under the assumption that they are padding added in formatPlaintext(). +// Obviously, do not invoke this method on raw data that can contain zero +// bytes. It is really only appropriate for printable ASCII/Latin-1 +// values. Roll your own function for more robust functionality :) + +function byteArrayToString(byteArray) { + var result = ""; + for(var i=0; i<byteArray.length; i++) + if (byteArray[i] != 0) + result += String.fromCharCode(byteArray[i]); + return result; +} +*/ + +// This function takes an array of bytes (byteArray) and converts them +// to a hexadecimal string. Array element 0 is found at the beginning of +// the resulting string, high nibble first. Consecutive elements follow +// similarly, for example [16, 255] --> "10ff". The function returns a +// string. + +function byteArrayToHex(byteArray) { + var result = ""; + if (!byteArray) + return; + for (var i=0; i<byteArray.length; i++) + result += ((byteArray[i]<16) ? "0" : "") + byteArray[i].toString(16); + + return result; +} + +// This function converts a string containing hexadecimal digits to an +// array of bytes. The resulting byte array is filled in the order the +// values occur in the string, for example "10FF" --> [16, 255]. This +// function returns an array. + +function hexToByteArray(hexString) { + var byteArray = []; + if (hexString.length % 2) // must have even length + return; + if (hexString.indexOf("0x") == 0 || hexString.indexOf("0X") == 0) + hexString = hexString.substring(2); + for (var i = 0; i<hexString.length; i += 2) + byteArray[Math.floor(i/2)] = parseInt(hexString.slice(i, i+2), 16); + return byteArray; +} + +// This function packs an array of bytes into the four row form defined by +// Rijndael. It assumes the length of the array of bytes is divisible by +// four. Bytes are filled in according to the Rijndael spec (starting with +// column 0, row 0 to 3). This function returns a 2d array. + +function packBytes(octets) { + var state = new Array(); + if (!octets || octets.length % 4) + return; + + state[0] = new Array(); state[1] = new Array(); + state[2] = new Array(); state[3] = new Array(); + for (var j=0; j<octets.length; j+= 4) { + state[0][j/4] = octets[j]; + state[1][j/4] = octets[j+1]; + state[2][j/4] = octets[j+2]; + state[3][j/4] = octets[j+3]; + } + return state; +} + +// This function unpacks an array of bytes from the four row format preferred +// by Rijndael into a single 1d array of bytes. It assumes the input "packed" +// is a packed array. Bytes are filled in according to the Rijndael spec. +// This function returns a 1d array of bytes. + +function unpackBytes(packed) { + var result = new Array(); + for (var j=0; j<packed[0].length; j++) { + result[result.length] = packed[0][j]; + result[result.length] = packed[1][j]; + result[result.length] = packed[2][j]; + result[result.length] = packed[3][j]; + } + return result; +} + +// This function takes a prospective plaintext (string or array of bytes) +// and pads it with pseudorandom bytes if its length is not a multiple of the block +// size. If plaintext is a string, it is converted to an array of bytes +// in the process. The type checking can be made much nicer using the +// instanceof operator, but this operator is not available until IE5.0 so I +// chose to use the heuristic below. + +function formatPlaintext(plaintext) { + var bpb = blockSizeInBits / 8; // bytes per block + var fillWithRandomBits; + var i; + + // if primitive string or String instance + if ((!((typeof plaintext == "object") && + ((typeof (plaintext[0])) == "number"))) && + ((typeof plaintext == "string") || plaintext.indexOf)) + { + plaintext = plaintext.split(""); + // Unicode issues here (ignoring high byte) + for (i=0; i<plaintext.length; i++) { + plaintext[i] = plaintext[i].charCodeAt(0) & 0xFF; + } + } + + i = plaintext.length % bpb; + if (i > 0) { +//alert("adding " + (bpb - 1) + " bytes"); +// plaintext = plaintext.concat(getRandomBytes(bpb - i)); + { + var paddingBytes; + var ii,cc; + + paddingBytes = new Array(); + cc = bpb - i; + for (ii=0; ii<cc; ii++) { + paddingBytes[ii] = cc; + } + +//is("cc", cc); +//is(getRandomBytes(bpb - i) + "", paddingBytes + ""); + plaintext = plaintext.concat(paddingBytes); + } + } + + return plaintext; +} + +// Returns an array containing "howMany" random bytes. + +function getRandomBytes(howMany) { + var i, bytes = new Array(); + +//alert("getting some random bytes"); + for (i = 0; i < howMany; i++) { + bytes[i] = prng.nextInt(255); + } + return bytes; +} + +// rijndaelEncrypt(plaintext, key, mode) +// Encrypts the plaintext using the given key and in the given mode. +// The parameter "plaintext" can either be a string or an array of bytes. +// The parameter "key" must be an array of key bytes. If you have a hex +// string representing the key, invoke hexToByteArray() on it to convert it +// to an array of bytes. The third parameter "mode" is a string indicating +// the encryption mode to use, either "ECB" or "CBC". If the parameter is +// omitted, ECB is assumed. +// +// An array of bytes representing the cihpertext is returned. To convert +// this array to hex, invoke byteArrayToHex() on it. + +function rijndaelEncrypt(plaintext, key, mode) { + var expandedKey, i, aBlock; + var bpb = blockSizeInBits / 8; // bytes per block + var ct; // ciphertext + + if (!plaintext || !key) + return; + if (key.length*8 != keySizeInBits) + return; + if (mode == "CBC") { + ct = getRandomBytes(bpb); // get IV +//dump("IV", byteArrayToHex(ct)); + } else { + mode = "ECB"; + ct = new Array(); + } + + // convert plaintext to byte array and pad with zeros if necessary. + plaintext = formatPlaintext(plaintext); + + expandedKey = keyExpansion(key); + + for (var block = 0; block < plaintext.length / bpb; block++) { + aBlock = plaintext.slice(block * bpb, (block + 1) * bpb); + if (mode == "CBC") { + for (var i = 0; i < bpb; i++) { + aBlock[i] ^= ct[(block * bpb) + i]; + } + } + ct = ct.concat(encrypt(aBlock, expandedKey)); + } + + return ct; +} + +// rijndaelDecrypt(ciphertext, key, mode) +// Decrypts the using the given key and mode. The parameter "ciphertext" +// must be an array of bytes. The parameter "key" must be an array of key +// bytes. If you have a hex string representing the ciphertext or key, +// invoke hexToByteArray() on it to convert it to an array of bytes. The +// parameter "mode" is a string, either "CBC" or "ECB". +// +// An array of bytes representing the plaintext is returned. To convert +// this array to a hex string, invoke byteArrayToHex() on it. To convert it +// to a string of characters, you can use byteArrayToString(). + +function rijndaelDecrypt(ciphertext, key, mode) { + var expandedKey; + var bpb = blockSizeInBits / 8; // bytes per block + var pt = new Array(); // plaintext array + var aBlock; // a decrypted block + var block; // current block number + + if (!ciphertext || !key || typeof ciphertext == "string") + return; + if (key.length*8 != keySizeInBits) + return; + if (!mode) { + mode = "ECB"; // assume ECB if mode omitted + } + + expandedKey = keyExpansion(key); + + // work backwards to accomodate CBC mode + for (block=(ciphertext.length / bpb)-1; block>0; block--) { + aBlock = + decrypt(ciphertext.slice(block*bpb,(block+1)*bpb), expandedKey); + if (mode == "CBC") + for (var i=0; i<bpb; i++) + pt[(block-1)*bpb + i] = aBlock[i] ^ ciphertext[(block-1)*bpb + i]; + else + pt = aBlock.concat(pt); + } + + // do last block if ECB (skips the IV in CBC) + if (mode == "ECB") + pt = decrypt(ciphertext.slice(0, bpb), expandedKey).concat(pt); + + return pt; +} + +//############################################################################# +// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (utf-8.js) +//############################################################################# + + + /* Encoding and decoding of Unicode character strings as + UTF-8 byte streams. */ + + // UNICODE_TO_UTF8 -- Encode Unicode argument string as UTF-8 return value + + function unicode_to_utf8(s) { + var utf8 = ""; + + for (var n = 0; n < s.length; n++) { + var c = s.charCodeAt(n); + + if (c <= 0x7F) { + // 0x00 - 0x7F: Emit as single byte, unchanged + utf8 += String.fromCharCode(c); + } else if ((c >= 0x80) && (c <= 0x7FF)) { + // 0x80 - 0x7FF: Output as two byte code, 0xC0 in first byte + // 0x80 in second byte + utf8 += String.fromCharCode((c >> 6) | 0xC0); + utf8 += String.fromCharCode((c & 0x3F) | 0x80); + } else { + // 0x800 - 0xFFFF: Output as three bytes, 0xE0 in first byte + // 0x80 in second byte + // 0x80 in third byte + utf8 += String.fromCharCode((c >> 12) | 0xE0); + utf8 += String.fromCharCode(((c >> 6) & 0x3F) | 0x80); + utf8 += String.fromCharCode((c & 0x3F) | 0x80); + } + } + return utf8; + } + + // UTF8_TO_UNICODE -- Decode UTF-8 argument into Unicode string return value + + function utf8_to_unicode(utf8) { + var s = "", i = 0, b1, b2, b2; + + while (i < utf8.length) { + b1 = utf8.charCodeAt(i); + if (b1 < 0x80) { // One byte code: 0x00 0x7F + s += String.fromCharCode(b1); + i++; + } else if((b1 >= 0xC0) && (b1 < 0xE0)) { // Two byte code: 0x80 - 0x7FF + b2 = utf8.charCodeAt(i + 1); + s += String.fromCharCode(((b1 & 0x1F) << 6) | (b2 & 0x3F)); + i += 2; + } else { // Three byte code: 0x800 - 0xFFFF + b2 = utf8.charCodeAt(i + 1); + b3 = utf8.charCodeAt(i + 2); + s += String.fromCharCode(((b1 & 0xF) << 12) | + ((b2 & 0x3F) << 6) | + (b3 & 0x3F)); + i += 3; + } + } + return s; + } + + /* ENCODE_UTF8 -- Encode string as UTF8 only if it contains + a character of 0x9D (Unicode OPERATING + SYSTEM COMMAND) or a character greater + than 0xFF. This permits all strings + consisting exclusively of 8 bit + graphic characters to be encoded as + themselves. We choose 0x9D as the sentinel + character as opposed to one of the more + logical PRIVATE USE characters because 0x9D + is not overloaded by the regrettable + "Windows-1252" character set. Now such characters + don't belong in JavaScript strings, but you never + know what somebody is going to paste into a + text box, so this choice keeps Windows-encoded + strings from bloating to UTF-8 encoding. */ + + function encode_utf8(s) { + var i, necessary = false; + + for (i = 0; i < s.length; i++) { + if ((s.charCodeAt(i) == 0x9D) || + (s.charCodeAt(i) > 0xFF)) { + necessary = true; + break; + } + } + if (!necessary) { + return s; + } + return String.fromCharCode(0x9D) + unicode_to_utf8(s); + } + + /* DECODE_UTF8 -- Decode a string encoded with encode_utf8 + above. If the string begins with the + sentinel character 0x9D (OPERATING + SYSTEM COMMAND), then we decode the + balance as a UTF-8 stream. Otherwise, + the string is output unchanged, as + it's guaranteed to contain only 8 bit + characters excluding 0x9D. */ + + function decode_utf8(s) { + if ((s.length > 0) && (s.charCodeAt(0) == 0x9D)) { + return utf8_to_unicode(s.substring(1)); + } + return s; + } + + +//############################################################################# +// Downloaded on April 26, 2006 from http://pajhome.org.uk/crypt/md5/md5.js +//############################################################################# + +/* + * A JavaScript implementation of the RSA Data Security, Inc. MD5 Message + * Digest Algorithm, as defined in RFC 1321. + * Version 2.1 Copyright (C) Paul Johnston 1999 - 2002. + * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet + * Distributed under the BSD License + * See http://pajhome.org.uk/crypt/md5 for more info. + */ + +/* + * Configurable variables. You may need to tweak these to be compatible with + * the server-side, but the defaults work in most cases. + */ +var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ +var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ +var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */ + +/* + * These are the functions you'll usually want to call + * They take string arguments and return either hex or base-64 encoded strings + */ +function hex_md5(s){ return binl2hex(core_md5(str2binl(s), s.length * chrsz));} +function b64_md5(s){ return binl2b64(core_md5(str2binl(s), s.length * chrsz));} +function str_md5(s){ return binl2str(core_md5(str2binl(s), s.length * chrsz));} +function hex_hmac_md5(key, data) { return binl2hex(core_hmac_md5(key, data)); } +function b64_hmac_md5(key, data) { return binl2b64(core_hmac_md5(key, data)); } +function str_hmac_md5(key, data) { return binl2str(core_hmac_md5(key, data)); } + +/* + * Perform a simple self-test to see if the VM is working + */ +function md5_vm_test() +{ + return hex_md5("abc") == "900150983cd24fb0d6963f7d28e17f72"; +} + +/* + * Calculate the MD5 of an array of little-endian words, and a bit length + */ +function core_md5(x, len) +{ + /* append padding */ + x[len >> 5] |= 0x80 << ((len) % 32); + x[(((len + 64) >>> 9) << 4) + 14] = len; + + var a = 1732584193; + var b = -271733879; + var c = -1732584194; + var d = 271733878; + + for(var i = 0; i < x.length; i += 16) + { + var olda = a; + var oldb = b; + var oldc = c; + var oldd = d; + + a = md5_ff(a, b, c, d, x[i+ 0], 7 , -680876936); + d = md5_ff(d, a, b, c, x[i+ 1], 12, -389564586); + c = md5_ff(c, d, a, b, x[i+ 2], 17, 606105819); + b = md5_ff(b, c, d, a, x[i+ 3], 22, -1044525330); + a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897); + d = md5_ff(d, a, b, c, x[i+ 5], 12, 1200080426); + c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341); + b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983); + a = md5_ff(a, b, c, d, x[i+ 8], 7 , 1770035416); + d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417); + c = md5_ff(c, d, a, b, x[i+10], 17, -42063); + b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162); + a = md5_ff(a, b, c, d, x[i+12], 7 , 1804603682); + d = md5_ff(d, a, b, c, x[i+13], 12, -40341101); + c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290); + b = md5_ff(b, c, d, a, x[i+15], 22, 1236535329); + + a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510); + d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632); + c = md5_gg(c, d, a, b, x[i+11], 14, 643717713); + b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302); + a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691); + d = md5_gg(d, a, b, c, x[i+10], 9 , 38016083); + c = md5_gg(c, d, a, b, x[i+15], 14, -660478335); + b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848); + a = md5_gg(a, b, c, d, x[i+ 9], 5 , 568446438); + d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690); + c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961); + b = md5_gg(b, c, d, a, x[i+ 8], 20, 1163531501); + a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467); + d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784); + c = md5_gg(c, d, a, b, x[i+ 7], 14, 1735328473); + b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734); + + a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558); + d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463); + c = md5_hh(c, d, a, b, x[i+11], 16, 1839030562); + b = md5_hh(b, c, d, a, x[i+14], 23, -35309556); + a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060); + d = md5_hh(d, a, b, c, x[i+ 4], 11, 1272893353); + c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632); + b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640); + a = md5_hh(a, b, c, d, x[i+13], 4 , 681279174); + d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222); + c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979); + b = md5_hh(b, c, d, a, x[i+ 6], 23, 76029189); + a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487); + d = md5_hh(d, a, b, c, x[i+12], 11, -421815835); + c = md5_hh(c, d, a, b, x[i+15], 16, 530742520); + b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651); + + a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844); + d = md5_ii(d, a, b, c, x[i+ 7], 10, 1126891415); + c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905); + b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055); + a = md5_ii(a, b, c, d, x[i+12], 6 , 1700485571); + d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606); + c = md5_ii(c, d, a, b, x[i+10], 15, -1051523); + b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799); + a = md5_ii(a, b, c, d, x[i+ 8], 6 , 1873313359); + d = md5_ii(d, a, b, c, x[i+15], 10, -30611744); + c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380); + b = md5_ii(b, c, d, a, x[i+13], 21, 1309151649); + a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070); + d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379); + c = md5_ii(c, d, a, b, x[i+ 2], 15, 718787259); + b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551); + + a = safe_add(a, olda); + b = safe_add(b, oldb); + c = safe_add(c, oldc); + d = safe_add(d, oldd); + } + return Array(a, b, c, d); + +} + +/* + * These functions implement the four basic operations the algorithm uses. + */ +function md5_cmn(q, a, b, x, s, t) +{ + return safe_add(bit_rol(safe_add(safe_add(a, q), safe_add(x, t)), s),b); +} +function md5_ff(a, b, c, d, x, s, t) +{ + return md5_cmn((b & c) | ((~b) & d), a, b, x, s, t); +} +function md5_gg(a, b, c, d, x, s, t) +{ + return md5_cmn((b & d) | (c & (~d)), a, b, x, s, t); +} +function md5_hh(a, b, c, d, x, s, t) +{ + return md5_cmn(b ^ c ^ d, a, b, x, s, t); +} +function md5_ii(a, b, c, d, x, s, t) +{ + return md5_cmn(c ^ (b | (~d)), a, b, x, s, t); +} + +/* + * Calculate the HMAC-MD5, of a key and some data + */ +function core_hmac_md5(key, data) +{ + var bkey = str2binl(key); + if(bkey.length > 16) bkey = core_md5(bkey, key.length * chrsz); + + var ipad = Array(16), opad = Array(16); + for(var i = 0; i < 16; i++) + { + ipad[i] = bkey[i] ^ 0x36363636; + opad[i] = bkey[i] ^ 0x5C5C5C5C; + } + + var hash = core_md5(ipad.concat(str2binl(data)), 512 + data.length * chrsz); + return core_md5(opad.concat(hash), 512 + 128); +} + +/* + * Add integers, wrapping at 2^32. This uses 16-bit operations internally + * to work around bugs in some JS interpreters. + */ +function safe_add(x, y) +{ + var lsw = (x & 0xFFFF) + (y & 0xFFFF); + var msw = (x >> 16) + (y >> 16) + (lsw >> 16); + return (msw << 16) | (lsw & 0xFFFF); +} + +/* + * Bitwise rotate a 32-bit number to the left. + */ +function bit_rol(num, cnt) +{ + return (num << cnt) | (num >>> (32 - cnt)); +} + +/* + * Convert a string to an array of little-endian words + * If chrsz is ASCII, characters >255 have their hi-byte silently ignored. + */ +function str2binl(str) +{ + var bin = Array(); + var mask = (1 << chrsz) - 1; + for(var i = 0; i < str.length * chrsz; i += chrsz) + bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (i%32); + return bin; +} + +/* + * Convert an array of little-endian words to a string + */ +function binl2str(bin) +{ + var str = ""; + var mask = (1 << chrsz) - 1; + for(var i = 0; i < bin.length * 32; i += chrsz) + str += String.fromCharCode((bin[i>>5] >>> (i % 32)) & mask); + return str; +} + +/* + * Convert an array of little-endian words to a hex string. + */ +function binl2hex(binarray) +{ + var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; + var str = ""; + for(var i = 0; i < binarray.length * 4; i++) + { + str += hex_tab.charAt((binarray[i>>2] >> ((i%4)*8+4)) & 0xF) + + hex_tab.charAt((binarray[i>>2] >> ((i%4)*8 )) & 0xF); + } + return str; +} + +/* + * Convert an array of little-endian words to a base-64 string + */ +function binl2b64(binarray) +{ + var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; + var str = ""; + for(var i = 0; i < binarray.length * 4; i += 3) + { + var triplet = (((binarray[i >> 2] >> 8 * ( i %4)) & 0xFF) << 16) + | (((binarray[i+1 >> 2] >> 8 * ((i+1)%4)) & 0xFF) << 8 ) + | ((binarray[i+2 >> 2] >> 8 * ((i+2)%4)) & 0xFF); + for(var j = 0; j < 4; j++) + { + if(i * 8 + j * 6 > binarray.length * 32) str += b64pad; + else str += tab.charAt((triplet >> 6*(3-j)) & 0x3F); + } + } + return str; +} + + +//############################################################################# +//############################################################################# +//############################################################################# + + + +MochiKit.Base.update(Clipperz.Crypto.Base, { + + '__repr__': function () { + return "[" + this.NAME + " " + this.VERSION + "]"; + }, + + 'toString': function () { + return this.__repr__(); + }, + + //----------------------------------------------------------------------------- + + 'encryptUsingSecretKey': function (aKey, aMessage) { +//Clipperz.Profile.start("Clipperz.Crypto.Base.encryptUsingSecretKey"); + var result; + var plaintext; + var header; + var key; + + key = hexToByteArray(Clipperz.Crypto.Base.computeHashValue(aKey)); + + addEntropyTime(); + prng = new AESprng(keyFromEntropy()); + + plaintext = encode_utf8(aMessage); + + header = Clipperz.Base.byteArrayToString(hexToByteArray(Clipperz.Crypto.Base.computeMD5HashValue(plaintext))); + + // Add message length in bytes to header + i = plaintext.length; + header += String.fromCharCode(i >>> 24); + header += String.fromCharCode(i >>> 16); + header += String.fromCharCode(i >>> 8); + header += String.fromCharCode(i & 0xFF); + + // The format of the actual message passed to rijndaelEncrypt + // is: + // + // Bytes Content + // 0-15 MD5 signature of plaintext + // 16-19 Length of plaintext, big-endian order + // 20-end Plaintext + // + // Note that this message will be padded with zero bytes + // to an integral number of AES blocks (blockSizeInBits / 8). + // This does not include the initial vector for CBC + // encryption, which is added internally by rijndaelEncrypt. + result = byteArrayToHex(rijndaelEncrypt(header + plaintext, key, "CBC")); + + delete prng; + +//Clipperz.Profile.stop("Clipperz.Crypto.Base.encryptUsingSecretKey"); + return result; + }, + + //............................................................................. + + 'decryptUsingSecretKey': function (aKey, aMessage) { +//Clipperz.Profile.start("Clipperz.Crypto.Base.decryptUsingSecretKey"); + var key; + var decryptedText; + var textLength; + var header; + var headerDigest; + var plaintext; + var i; + + key = hexToByteArray(Clipperz.Crypto.Base.computeHashValue(aKey)); + + decryptedText = rijndaelDecrypt(hexToByteArray(aMessage), key, "CBC"); + + header = decryptedText.slice(0, 20); + decryptedText = decryptedText.slice(20); + + headerDigest = byteArrayToHex(header.slice(0,16)); + textLength = (header[16] << 24) | (header[17] << 16) | (header[18] << 8) | header[19]; + + if ((textLength < 0) || (textLength > decryptedText.length)) { +// jslog.warning("Message (length " + decryptedText.length + ") truncated. " + textLength + " characters expected."); + // Try to sauve qui peut by setting length to entire message + textLength = decryptedText.length; + } + + plainText = ""; + + for (i=0; i<textLength; i++) { + plainText += String.fromCharCode(decryptedText[i]); + } + + if (Clipperz.Crypto.Base.computeMD5HashValue(plainText) != headerDigest) { +// jslog.warning("Message corrupted. Checksum of decrypted message does not match."); + throw Clipperz.Crypto.Base.exception.CorruptedMessage; +// throw new Error("Message corrupted. Checksum of decrypted message does not match. Parsed result: " + decode_utf8(plainText)); + } + + // That's it; plug plaintext into the result field + + result = decode_utf8(plainText); + +//Clipperz.Profile.stop("Clipperz.Crypto.Base.decryptUsingSecretKey"); + return result; + }, + + //----------------------------------------------------------------------------- + + 'computeHashValue': function (aMessage) { +//Clipperz.Profile.start("Clipperz.Crypto.Base.computeHashValue"); + var result; + + result = hex_sha256(aMessage); +//Clipperz.Profile.stop("Clipperz.Crypto.Base.computeHashValue"); + + return result; + }, + + //......................................................................... + + 'computeMD5HashValue': function (aMessage) { + var result; +//Clipperz.Profile.start("Clipperz.Crypto.Base.computeMD5HashValue"); + result = hex_md5(aMessage); +//Clipperz.Profile.stop("Clipperz.Crypto.Base.computeMD5HashValue"); + + return result; + }, + + //----------------------------------------------------------------------------- + + 'generateRandomSeed': function () { +//Clipperz.Profile.start("Clipperz.Crypto.Base.generateRandomSeed"); + var result; + var seed; + var prng; + var charA; + var i; + + addEntropyTime(); + + seed = keyFromEntropy(); + prng = new AESprng(seed); + + result = ""; + charA = ("A").charCodeAt(0); + + for (i = 0; i < 64; i++) { + result += String.fromCharCode(charA + prng.nextInt(25)); + } + + delete prng; + + result = Clipperz.Crypto.Base.computeHashValue(result); + +//Clipperz.Profile.stop("Clipperz.Crypto.Base.generateRandomSeed"); + return result; + }, + + //----------------------------------------------------------------------------- + + 'exception': { + 'CorruptedMessage': new MochiKit.Base.NamedError("Clipperz.Crypto.Base.exception.CorruptedMessage") + }, + + //......................................................................... + __syntaxFix__: "syntax fix" +}); + diff --git a/frontend/beta/js/Clipperz/Crypto/BigInt.js b/frontend/beta/js/Clipperz/Crypto/BigInt.js new file mode 100644 index 0000000..d4d05d2 --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/BigInt.js @@ -0,0 +1,1760 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +if (typeof(Clipperz) == 'undefined') { Clipperz = {}; } +if (typeof(Clipperz.Crypto) == 'undefined') { Clipperz.Crypto = {}; } + +//############################################################################# +// Downloaded on March 05, 2007 from http://www.leemon.com/crypto/BigInt.js +//############################################################################# + + +//////////////////////////////////////////////////////////////////////////////////////// +// Big Integer Library v. 5.0 +// Created 2000, last modified 2006 +// Leemon Baird +// www.leemon.com +// +// This file is public domain. You can use it for any purpose without restriction. +// I do not guarantee that it is correct, so use it at your own risk. If you use +// it for something interesting, I'd appreciate hearing about it. If you find +// any bugs or make any improvements, I'd appreciate hearing about those too. +// It would also be nice if my name and address were left in the comments. +// But none of that is required. +// +// This code defines a bigInt library for arbitrary-precision integers. +// A bigInt is an array of integers storing the value in chunks of bpe bits, +// little endian (buff[0] is the least significant word). +// Negative bigInts are stored two's complement. +// Some functions assume their parameters have at least one leading zero element. +// Functions with an underscore at the end of the name have unpredictable behavior in case of overflow, +// so the caller must make sure overflow won't happen. +// For each function where a parameter is modified, that same +// variable must not be used as another argument too. +// So, you cannot square x by doing multMod_(x,x,n). +// You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n). +// +// These functions are designed to avoid frequent dynamic memory allocation in the inner loop. +// For most functions, if it needs a BigInt as a local variable it will actually use +// a global, and will only allocate to it when it's not the right size. This ensures +// that when a function is called repeatedly with same-sized parameters, it only allocates +// memory on the first call. +// +// Note that for cryptographic purposes, the calls to Math.random() must +// be replaced with calls to a better pseudorandom number generator. +// +// In the following, "bigInt" means a bigInt with at least one leading zero element, +// and "integer" means a nonnegative integer less than radix. In some cases, integer +// can be negative. Negative bigInts are 2s complement. +// +// The following functions do not modify their inputs, but dynamically allocate memory every time they are called: +// +// function bigInt2str(x,base) //convert a bigInt into a string in a given base, from base 2 up to base 95 +// function dup(x) //returns a copy of bigInt x +// function findPrimes(n) //return array of all primes less than integer n +// function int2bigInt(t,n,m) //convert integer t to a bigInt with at least n bits and m array elements +// function int2bigInt(s,b,n,m) //convert string s in base b to a bigInt with at least n bits and m array elements +// function trim(x,k) //return a copy of x with exactly k leading zero elements +// +// The following functions do not modify their inputs, so there is never a problem with the result being too big: +// +// function bitSize(x) //returns how many bits long the bigInt x is, not counting leading zeros +// function equals(x,y) //is the bigInt x equal to the bigint y? +// function equalsInt(x,y) //is bigint x equal to integer y? +// function greater(x,y) //is x>y? (x and y are nonnegative bigInts) +// function greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y? +// function isZero(x) //is the bigInt x equal to zero? +// function millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime (as opposed to definitely composite)? +// function modInt(x,n) //return x mod n for bigInt x and integer n. +// function negative(x) //is bigInt x negative? +// +// The following functions do not modify their inputs, but allocate memory and call functions with underscores +// +// function add(x,y) //return (x+y) for bigInts x and y. +// function addInt(x,n) //return (x+n) where x is a bigInt and n is an integer. +// function expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed +// function inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null +// function mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n. +// function mult(x,y) //return x*y for bigInts x and y. This is faster when y<x. +// function multMod(x,y,n) //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x. +// function powMod(x,y,n) //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n. +// function randTruePrime(k) //return a new, random, k-bit, true prime using Maurer's algorithm. +// function sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement +// +// The following functions write a bigInt result to one of the parameters, but +// the result is never bigger than the original, so there can't be overflow problems: +// +// function divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder +// function GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed). +// function halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement +// function mod_(x,n) //do x=x mod n for bigInts x and n. +// function rightShift_(x,n) //right shift bigInt x by n bits. 0 <= n < bpe. +// +// The following functions write a bigInt result to one of the parameters. The caller is responsible for +// ensuring it is large enough to hold the result. +// +// function addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer +// function add_(x,y) //do x=x+y for bigInts x and y +// function addShift_(x,y,ys) //do x=x+(y<<(ys*bpe)) +// function copy_(x,y) //do x=y on bigInts x and y +// function copyInt_(x,n) //do x=n on bigInt x and integer n +// function carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits. +// function divide_(x,y,q,r) //divide_ x by y giving quotient q and remainder r +// function eGCD_(x,y,d,a,b) //sets a,b,d to positive big integers such that d = GCD_(x,y) = a*x-b*y +// function inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist +// function inverseModInt_(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse +// function leftShift_(x,n) //left shift bigInt x by n bits. n<bpe. +// function linComb_(x,y,a,b) //do x=a*x+b*y for bigInts x and y and integers a and b +// function linCombShift_(x,y,b,ys) //do x=x+b*(y<<(ys*bpe)) for bigInts x and y, and integers b and ys +// function mont_(x,y,n,np) //Montgomery multiplication (see comments where the function is defined) +// function mult_(x,y) //do x=x*y for bigInts x and y. +// function multInt_(x,n) //do x=x*n where x is a bigInt and n is an integer. +// function multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n. +// function powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1. +// function randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1. +// function randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb. +// function squareMod_(x,n) //do x=x*x mod n for bigInts x,n +// function sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement. +// function subShift_(x,y,ys) //do x=x-(y<<(ys*bpe)). Negative answers will be 2s complement. +// +// The following functions are based on algorithms from the _Handbook of Applied Cryptography_ +// powMod_() = algorithm 14.94, Montgomery exponentiation +// eGCD_,inverseMod_() = algorithm 14.61, Binary extended GCD_ +// GCD_() = algorothm 14.57, Lehmer's algorithm +// mont_() = algorithm 14.36, Montgomery multiplication +// divide_() = algorithm 14.20 Multiple-precision division +// squareMod_() = algorithm 14.16 Multiple-precision squaring +// randTruePrime_() = algorithm 4.62, Maurer's algorithm +// millerRabin() = algorithm 4.24, Miller-Rabin algorithm +// +// Profiling shows: +// randTruePrime_() spends: +// 10% of its time in calls to powMod_() +// 85% of its time in calls to millerRabin() +// millerRabin() spends: +// 99% of its time in calls to powMod_() (always with a base of 2) +// powMod_() spends: +// 94% of its time in calls to mont_() (almost always with x==y) +// +// This suggests there are several ways to speed up this library slightly: +// - convert powMod_ to use a Montgomery form of k-ary window (or maybe a Montgomery form of sliding window) +// -- this should especially focus on being fast when raising 2 to a power mod n +// - convert randTruePrime_() to use a minimum r of 1/3 instead of 1/2 with the appropriate change to the test +// - tune the parameters in randTruePrime_(), including c, m, and recLimit +// - speed up the single loop in mont_() that takes 95% of the runtime, perhaps by reducing checking +// within the loop when all the parameters are the same length. +// +// There are several ideas that look like they wouldn't help much at all: +// - replacing trial division in randTruePrime_() with a sieve (that speeds up something taking almost no time anyway) +// - increase bpe from 15 to 30 (that would help if we had a 32*32->64 multiplier, but not with JavaScript's 32*32->32) +// - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square +// followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that +// method would be slower. This is unfortunate because the code currently spends almost all of its time +// doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring +// would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded +// sentences that seem to imply it's faster to do a non-modular square followed by a single +// Montgomery reduction, but that's obviously wrong. +//////////////////////////////////////////////////////////////////////////////////////// + +//globals +bpe=0; //bits stored per array element +mask=0; //AND this with an array element to chop it down to bpe bits +radix=mask+1; //equals 2^bpe. A single 1 bit to the left of the last bit of mask. + +//the digits for converting to different bases +digitsStr='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-'; + +//initialize the global variables +for (bpe=0; (1<<(bpe+1)) > (1<<bpe); bpe++); //bpe=number of bits in the mantissa on this platform +bpe>>=1; //bpe=number of bits in one element of the array representing the bigInt +mask=(1<<bpe)-1; //AND the mask with an integer to get its bpe least significant bits +radix=mask+1; //2^bpe. a single 1 bit to the left of the first bit of mask +one=int2bigInt(1,1,1); //constant used in powMod_() + +//the following global variables are scratchpad memory to +//reduce dynamic memory allocation in the inner loop +t=new Array(0); +ss=t; //used in mult_() +s0=t; //used in multMod_(), squareMod_() +s1=t; //used in powMod_(), multMod_(), squareMod_() +s2=t; //used in powMod_(), multMod_() +s3=t; //used in powMod_() +s4=t; s5=t; //used in mod_() +s6=t; //used in bigInt2str() +s7=t; //used in powMod_() +T=t; //used in GCD_() +sa=t; //used in mont_() +mr_x1=t; mr_r=t; mr_a=t; //used in millerRabin() +eg_v=t; eg_u=t; eg_A=t; eg_B=t; eg_C=t; eg_D=t; //used in eGCD_(), inverseMod_() +md_q1=t; md_q2=t; md_q3=t; md_r=t; md_r1=t; md_r2=t; md_tt=t; //used in mod_() + +primes=t; pows=t; s_i=t; s_i2=t; s_R=t; s_rm=t; s_q=t; s_n1=t; + s_a=t; s_r2=t; s_n=t; s_b=t; s_d=t; s_x1=t; s_x2=t, s_aa=t; //used in randTruePrime_() + +//////////////////////////////////////////////////////////////////////////////////////// + +//return array of all primes less than integer n +function findPrimes(n) { + var i,s,p,ans; + s=new Array(n); + for (i=0;i<n;i++) + s[i]=0; + s[0]=2; + p=0; //first p elements of s are primes, the rest are a sieve + for(;s[p]<n;) { //s[p] is the pth prime + for(i=s[p]*s[p]; i<n; i+=s[p]) //mark multiples of s[p] + s[i]=1; + p++; + s[p]=s[p-1]+1; + for(; s[p]<n && s[s[p]]; s[p]++); //find next prime (where s[p]==0) + } + ans=new Array(p); + for(i=0;i<p;i++) + ans[i]=s[i]; + return ans; +} + +//does a single round of Miller-Rabin base b consider x to be a possible prime? +//x is a bigInt, and b is an integer +function millerRabin(x,b) { + var i,j,k,s; + + if (mr_x1.length!=x.length) { + mr_x1=dup(x); + mr_r=dup(x); + mr_a=dup(x); + } + + copyInt_(mr_a,b); + copy_(mr_r,x); + copy_(mr_x1,x); + + addInt_(mr_r,-1); + addInt_(mr_x1,-1); + + //s=the highest power of two that divides mr_r + k=0; + for (i=0;i<mr_r.length;i++) + for (j=1;j<mask;j<<=1) + if (x[i] & j) { + s=(k<mr_r.length+bpe ? k : 0); + i=mr_r.length; + j=mask; + } else + k++; + + if (s) + rightShift_(mr_r,s); + + powMod_(mr_a,mr_r,x); + + if (!equalsInt(mr_a,1) && !equals(mr_a,mr_x1)) { + j=1; + while (j<=s-1 && !equals(mr_a,mr_x1)) { + squareMod_(mr_a,x); + if (equalsInt(mr_a,1)) { + return 0; + } + j++; + } + if (!equals(mr_a,mr_x1)) { + return 0; + } + } + return 1; +} + +//returns how many bits long the bigInt is, not counting leading zeros. +function bitSize(x) { + var j,z,w; + for (j=x.length-1; (x[j]==0) && (j>0); j--); + for (z=0,w=x[j]; w; (w>>=1),z++); + z+=bpe*j; + return z; +} + +//return a copy of x with at least n elements, adding leading zeros if needed +function expand(x,n) { + var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0); + copy_(ans,x); + return ans; +} + +//return a k-bit true random prime using Maurer's algorithm. +function randTruePrime(k) { + var ans=int2bigInt(0,k,0); + randTruePrime_(ans,k); + return trim(ans,1); +} + +//return a new bigInt equal to (x mod n) for bigInts x and n. +function mod(x,n) { + var ans=dup(x); + mod_(ans,n); + return trim(ans,1); +} + +//return (x+n) where x is a bigInt and n is an integer. +function addInt(x,n) { + var ans=expand(x,x.length+1); + addInt_(ans,n); + return trim(ans,1); +} + +//return x*y for bigInts x and y. This is faster when y<x. +function mult(x,y) { + var ans=expand(x,x.length+y.length); + mult_(ans,y); + return trim(ans,1); +} + +//return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n. +function powMod(x,y,n) { + var ans=expand(x,n.length); + powMod_(ans,trim(y,2),trim(n,2),0); //this should work without the trim, but doesn't + return trim(ans,1); +} + +//return (x-y) for bigInts x and y. Negative answers will be 2s complement +function sub(x,y) { + var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); + sub_(ans,y); + return trim(ans,1); +} + +//return (x+y) for bigInts x and y. +function add(x,y) { + var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); + add_(ans,y); + return trim(ans,1); +} + +//return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null +function inverseMod(x,n) { + var ans=expand(x,n.length); + var s; + s=inverseMod_(ans,n); + return s ? trim(ans,1) : null; +} + +//return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x. +function multMod(x,y,n) { + var ans=expand(x,n.length); + multMod_(ans,y,n); + return trim(ans,1); +} + +//generate a k-bit true random prime using Maurer's algorithm, +//and put it into ans. The bigInt ans must be large enough to hold it. +function randTruePrime_(ans,k) { + var c,m,pm,dd,j,r,B,divisible,z,zz,recSize; + + if (primes.length==0) + primes=findPrimes(30000); //check for divisibility by primes <=30000 + + if (pows.length==0) { + pows=new Array(512); + for (j=0;j<512;j++) { + pows[j]=Math.pow(2,j/511.-1.); + } + } + + //c and m should be tuned for a particular machine and value of k, to maximize speed + //this was: c=primes[primes.length-1]/k/k; //check using all the small primes. (c=0.1 in HAC) + c=0.1; + m=20; //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits + recLimit=20; /*must be at least 2 (was 29)*/ //stop recursion when k <=recLimit + + if (s_i2.length!=ans.length) { + s_i2=dup(ans); + s_R =dup(ans); + s_n1=dup(ans); + s_r2=dup(ans); + s_d =dup(ans); + s_x1=dup(ans); + s_x2=dup(ans); + s_b =dup(ans); + s_n =dup(ans); + s_i =dup(ans); + s_rm=dup(ans); + s_q =dup(ans); + s_a =dup(ans); + s_aa=dup(ans); + } + + if (k <= recLimit) { //generate small random primes by trial division up to its square root + pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k) + copyInt_(ans,0); + for (dd=1;dd;) { + dd=0; + ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<<k)); //random, k-bit, odd integer, with msb 1 + for (j=1;(j<primes.length) && ((primes[j]&pm)==primes[j]);j++) { //trial division by all primes 3...sqrt(2^k) + if (0==(ans[0]%primes[j])) { + dd=1; + break; + } + } + } + carry_(ans); + return; + } + + B=c*k*k; //try small primes up to B (or all the primes[] array if the largest is less than B). + if (k>2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits + for (r=1; k-k*r<=m; ) + r=pows[Math.floor(Math.random()*512)]; //r=Math.pow(2,Math.random()-1); + else + r=.5; + + //simulation suggests the more complex algorithm using r=.333 is only slightly faster. + + recSize=Math.floor(r*k)+1; + + randTruePrime_(s_q,recSize); + copyInt_(s_i2,0); + s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2) + divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q)) + + z=bitSize(s_i); + + for (;;) { + for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1] + randBigInt_(s_R,z,0); + if (greater(s_i,s_R)) + break; + } //now s_R is in the range [0,s_i-1] + addInt_(s_R,1); //now s_R is in the range [1,s_i] + add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i] + + copy_(s_n,s_q); + mult_(s_n,s_R); + multInt_(s_n,2); + addInt_(s_n,1); //s_n=2*s_R*s_q+1 + + copy_(s_r2,s_R); + multInt_(s_r2,2); //s_r2=2*s_R + + //check s_n for divisibility by small primes up to B + for (divisible=0,j=0; (j<primes.length) && (primes[j]<B); j++) + if (modInt(s_n,primes[j])==0) { + divisible=1; + break; + } + + if (!divisible) //if it passes small primes check, then try a single Miller-Rabin base 2 + if (!millerRabin(s_n,2)) //this line represents 75% of the total runtime for randTruePrime_ + divisible=1; + + if (!divisible) { //if it passes that test, continue checking s_n + addInt_(s_n,-3); + for (j=s_n.length-1;(s_n[j]==0) && (j>0); j--); //strip leading zeros + for (zz=0,w=s_n[j]; w; (w>>=1),zz++); + zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros + for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1] + randBigInt_(s_a,zz,0); + if (greater(s_n,s_a)) + break; + } //now s_a is in the range [0,s_n-1] + addInt_(s_n,3); //now s_a is in the range [0,s_n-4] + addInt_(s_a,2); //now s_a is in the range [2,s_n-2] + copy_(s_b,s_a); + copy_(s_n1,s_n); + addInt_(s_n1,-1); + powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n + addInt_(s_b,-1); + if (isZero(s_b)) { + copy_(s_b,s_a); + powMod_(s_b,s_r2,s_n); + addInt_(s_b,-1); + copy_(s_aa,s_n); + copy_(s_d,s_b); + GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime + if (equalsInt(s_d,1)) { + copy_(ans,s_aa); + return; //if we've made it this far, then s_n is absolutely guaranteed to be prime + } + } + } + } +} + +//set b to an n-bit random BigInt. If s=1, then nth bit (most significant bit) is set to 1. +//array b must be big enough to hold the result. Must have n>=1 +function randBigInt_(b,n,s) { + var i,a; + for (i=0;i<b.length;i++) + b[i]=0; + a=Math.floor((n-1)/bpe)+1; //# array elements to hold the BigInt + for (i=0;i<a;i++) { + b[i]=Math.floor(Math.random()*(1<<(bpe-1))); + } + b[a-1] &= (2<<((n-1)%bpe))-1; + if (s) + b[a-1] |= (1<<((n-1)%bpe)); +} + +//set x to the greatest common divisor of x and y. +//x,y are bigInts with the same number of elements. y is destroyed. +function GCD_(x,y) { + var i,xp,yp,A,B,C,D,q,sing; + if (T.length!=x.length) + T=dup(x); + + sing=1; + while (sing) { //while y has nonzero elements other than y[0] + sing=0; + for (i=1;i<y.length;i++) //check if y has nonzero elements other than 0 + if (y[i]) { + sing=1; + break; + } + if (!sing) break; //quit when y all zero elements except possibly y[0] + + for (i=x.length;!x[i] && i>=0;i--); //find most significant element of x + xp=x[i]; + yp=y[i]; + A=1; B=0; C=0; D=1; + while ((yp+C) && (yp+D)) { + q =Math.floor((xp+A)/(yp+C)); + qp=Math.floor((xp+B)/(yp+D)); + if (q!=qp) + break; + t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp) + t= B-q*D; B=D; D=t; + t=xp-q*yp; xp=yp; yp=t; + } + if (B) { + copy_(T,x); + linComb_(x,y,A,B); //x=A*x+B*y + linComb_(y,T,D,C); //y=D*y+C*T + } else { + mod_(x,y); + copy_(T,x); + copy_(x,y); + copy_(y,T); + } + } + if (y[0]==0) + return; + t=modInt(x,y[0]); + copyInt_(x,y[0]); + y[0]=t; + while (y[0]) { + x[0]%=y[0]; + t=x[0]; x[0]=y[0]; y[0]=t; + } +} + +//do x=x**(-1) mod n, for bigInts x and n. +//If no inverse exists, it sets x to zero and returns 0, else it returns 1. +//The x array must be at least as large as the n array. +function inverseMod_(x,n) { + var k=1+2*Math.max(x.length,n.length); + + if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist + copyInt_(x,0); + return 0; + } + + if (eg_u.length!=k) { + eg_u=new Array(k); + eg_v=new Array(k); + eg_A=new Array(k); + eg_B=new Array(k); + eg_C=new Array(k); + eg_D=new Array(k); + } + + copy_(eg_u,x); + copy_(eg_v,n); + copyInt_(eg_A,1); + copyInt_(eg_B,0); + copyInt_(eg_C,0); + copyInt_(eg_D,1); + for (;;) { + while(!(eg_u[0]&1)) { //while eg_u is even + halve_(eg_u); + if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2 + halve_(eg_A); + halve_(eg_B); + } else { + add_(eg_A,n); halve_(eg_A); + sub_(eg_B,x); halve_(eg_B); + } + } + + while (!(eg_v[0]&1)) { //while eg_v is even + halve_(eg_v); + if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2 + halve_(eg_C); + halve_(eg_D); + } else { + add_(eg_C,n); halve_(eg_C); + sub_(eg_D,x); halve_(eg_D); + } + } + + if (!greater(eg_v,eg_u)) { //eg_v <= eg_u + sub_(eg_u,eg_v); + sub_(eg_A,eg_C); + sub_(eg_B,eg_D); + } else { //eg_v > eg_u + sub_(eg_v,eg_u); + sub_(eg_C,eg_A); + sub_(eg_D,eg_B); + } + + if (equalsInt(eg_u,0)) { + if (negative(eg_C)) //make sure answer is nonnegative + add_(eg_C,n); + copy_(x,eg_C); + + if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse + copyInt_(x,0); + return 0; + } + return 1; + } + } +} + +//return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse +function inverseModInt_(x,n) { + var a=1,b=0,t; + for (;;) { + if (x==1) return a; + if (x==0) return 0; + b-=a*Math.floor(n/x); + n%=x; + + if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to += + if (n==0) return 0; + a-=b*Math.floor(x/n); + x%=n; + } +} + +//Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that: +// v = GCD_(x,y) = a*x-b*y +//The bigInts v, a, b, must have exactly as many elements as the larger of x and y. +function eGCD_(x,y,v,a,b) { + var g=0; + var k=Math.max(x.length,y.length); + if (eg_u.length!=k) { + eg_u=new Array(k); + eg_A=new Array(k); + eg_B=new Array(k); + eg_C=new Array(k); + eg_D=new Array(k); + } + while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even + halve_(x); + halve_(y); + g++; + } + copy_(eg_u,x); + copy_(v,y); + copyInt_(eg_A,1); + copyInt_(eg_B,0); + copyInt_(eg_C,0); + copyInt_(eg_D,1); + for (;;) { + while(!(eg_u[0]&1)) { //while u is even + halve_(eg_u); + if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2 + halve_(eg_A); + halve_(eg_B); + } else { + add_(eg_A,y); halve_(eg_A); + sub_(eg_B,x); halve_(eg_B); + } + } + + while (!(v[0]&1)) { //while v is even + halve_(v); + if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2 + halve_(eg_C); + halve_(eg_D); + } else { + add_(eg_C,y); halve_(eg_C); + sub_(eg_D,x); halve_(eg_D); + } + } + + if (!greater(v,eg_u)) { //v<=u + sub_(eg_u,v); + sub_(eg_A,eg_C); + sub_(eg_B,eg_D); + } else { //v>u + sub_(v,eg_u); + sub_(eg_C,eg_A); + sub_(eg_D,eg_B); + } + if (equalsInt(eg_u,0)) { + if (negative(eg_C)) { //make sure a (C)is nonnegative + add_(eg_C,y); + sub_(eg_D,x); + } + multInt_(eg_D,-1); ///make sure b (D) is nonnegative + copy_(a,eg_C); + copy_(b,eg_D); + leftShift_(v,g); + return; + } + } +} + + +//is bigInt x negative? +function negative(x) { + return ((x[x.length-1]>>(bpe-1))&1); +} + + +//is (x << (shift*bpe)) > y? +//x and y are nonnegative bigInts +//shift is a nonnegative integer +function greaterShift(x,y,shift) { + var kx=x.length, ky=y.length; + k=((kx+shift)<ky) ? (kx+shift) : ky; + for (i=ky-1-shift; i<kx && i>=0; i++) + if (x[i]>0) + return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger + for (i=kx-1+shift; i<ky; i++) + if (y[i]>0) + return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger + for (i=k-1; i>=shift; i--) + if (x[i-shift]>y[i]) return 1; + else if (x[i-shift]<y[i]) return 0; + return 0; +} + +//is x > y? (x and y both nonnegative) +function greater(x,y) { + var i; + var k=(x.length<y.length) ? x.length : y.length; + + for (i=x.length;i<y.length;i++) + if (y[i]) + return 0; //y has more digits + + for (i=y.length;i<x.length;i++) + if (x[i]) + return 1; //x has more digits + + for (i=k-1;i>=0;i--) + if (x[i]>y[i]) + return 1; + else if (x[i]<y[i]) + return 0; + return 0; +} + +//divide_ x by y giving quotient q and remainder r. (q=floor(x/y), r=x mod y). All 4 are bigints. +//x must have at least one leading zero element. +//y must be nonzero. +//q and r must be arrays that are exactly the same length as x. +//the x array must have at least as many elements as y. +function divide_(x,y,q,r) { + var kx, ky; + var i,j,y1,y2,c,a,b; + copy_(r,x); + for (ky=y.length;y[ky-1]==0;ky--); //kx,ky is number of elements in x,y, not including leading zeros + for (kx=r.length;r[kx-1]==0 && kx>ky;kx--); + + //normalize: ensure the most significant element of y has its highest bit set + b=y[ky-1]; + for (a=0; b; a++) + b>>=1; + a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element + leftShift_(y,a); //multiply both by 1<<a now, then divide_ both by that at the end + leftShift_(r,a); + + copyInt_(q,0); // q=0 + while (!greaterShift(y,r,kx-ky)) { // while (leftShift_(y,kx-ky) <= r) { + subShift_(r,y,kx-ky); // r=r-leftShift_(y,kx-ky) + q[kx-ky]++; // q[kx-ky]++; + } // } + + for (i=kx-1; i>=ky; i--) { + if (r[i]==y[ky-1]) + q[i-ky]=mask; + else + q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]); + + //The following for(;;) loop is equivalent to the commented while loop, + //except that the uncommented version avoids overflow. + //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0 + // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2]) + // q[i-ky]--; + for (;;) { + y2=(ky>1 ? y[ky-2] : 0)*q[i-ky]; + c=y2>>bpe; + y2=y2 & mask; + y1=c+q[i-ky]*y[ky-1]; + c=y1>>bpe; + y1=y1 & mask; + + if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]) + q[i-ky]--; + else + break; + } + + linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky) + if (negative(r)) { + addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky) + q[i-ky]--; + } + } + + rightShift_(y,a); //undo the normalization step + rightShift_(r,a); //undo the normalization step +} + +//do carries and borrows so each element of the bigInt x fits in bpe bits. +function carry_(x) { + var i,k,c,b; + k=x.length; + c=0; + for (i=0;i<k;i++) { + c+=x[i]; + b=0; + if (c<0) { + b=-(c>>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + } +} + +//return x mod n for bigInt x and integer n. +function modInt(x,n) { + var i,c=0; + for (i=x.length-1; i>=0; i--) + c=(c*radix+x[i])%n; + return c; +} + +//convert the integer t into a bigInt with at least the given number of bits. +//the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word) +//Pad the array with leading zeros so that it has at least minSize elements. +//There will always be at least one leading 0 element. +function int2bigInt(t,bits,minSize) { + var i,k; + k=Math.ceil(bits/bpe)+1; + k=minSize>k ? minSize : k; + buff=new Array(k); + copyInt_(buff,t); + return buff; +} + +//return the bigInt given a string representation in a given base. +//Pad the array with leading zeros so that it has at least minSize elements. +//If base=-1, then it reads in a space-separated list of array elements in decimal. +//The array will always have at least one leading zero, unless base=-1. +function str2bigInt(s,base,minSize) { + var d, i, j, x, y, kk; + var k=s.length; + if (base==-1) { //comma-separated list of array elements in decimal + x=new Array(0); + for (;;) { + y=new Array(x.length+1); + for (i=0;i<x.length;i++) + y[i+1]=x[i]; + y[0]=parseInt(s,10); + x=y; + d=s.indexOf(',',0); + if (d<1) + break; + s=s.substring(d+1); + if (s.length==0) + break; + } + if (x.length<minSize) { + y=new Array(minSize); + copy_(y,x); + return y; + } + return x; + } + + x=int2bigInt(0,base*k,0); + for (i=0;i<k;i++) { + d=digitsStr.indexOf(s.substring(i,i+1),0); + if (base<=36 && d>=36) //convert lowercase to uppercase if base<=36 + d-=26; + if (d<base && d>=0) { //ignore illegal characters + multInt_(x,base); + addInt_(x,d); + } + } + + for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros + k=minSize>k+1 ? minSize : k+1; + y=new Array(k); + kk=k<x.length ? k : x.length; + for (i=0;i<kk;i++) + y[i]=x[i]; + for (;i<k;i++) + y[i]=0; + return y; +} + +//is bigint x equal to integer y? +//y must have less than bpe bits +function equalsInt(x,y) { + var i; + if (x[0]!=y) + return 0; + for (i=1;i<x.length;i++) + if (x[i]) + return 0; + return 1; +} + +//are bigints x and y equal? +//this works even if x and y are different lengths and have arbitrarily many leading zeros +function equals(x,y) { + var i; + var k=x.length<y.length ? x.length : y.length; + for (i=0;i<k;i++) + if (x[i]!=y[i]) + return 0; + if (x.length>y.length) { + for (;i<x.length;i++) + if (x[i]) + return 0; + } else { + for (;i<y.length;i++) + if (y[i]) + return 0; + } + return 1; +} + +//is the bigInt x equal to zero? +function isZero(x) { + var i; + for (i=0;i<x.length;i++) + if (x[i]) + return 0; + return 1; +} + +//convert a bigInt into a string in a given base, from base 2 up to base 95. +//Base -1 prints the contents of the array representing the number. +function bigInt2str(x,base) { + var i,t,s=""; + + if (s6.length!=x.length) + s6=dup(x); + else + copy_(s6,x); + + if (base==-1) { //return the list of array contents + for (i=x.length-1;i>0;i--) + s+=x[i]+','; + s+=x[0]; + } + else { //return it in the given base + while (!isZero(s6)) { + t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base); + s=digitsStr.substring(t,t+1)+s; + } + } + if (s.length==0) + s="0"; + return s; +} + +//returns a duplicate of bigInt x +function dup(x) { + var i; + buff=new Array(x.length); + copy_(buff,x); + return buff; +} + +//do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y). +function copy_(x,y) { + var i; + var k=x.length<y.length ? x.length : y.length; + for (i=0;i<k;i++) + x[i]=y[i]; + for (i=k;i<x.length;i++) + x[i]=0; +} + +//do x=y on bigInt x and integer y. +function copyInt_(x,n) { + var i,c; + for (c=n,i=0;i<x.length;i++) { + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x+n where x is a bigInt and n is an integer. +//x must be large enough to hold the result. +function addInt_(x,n) { + var i,k,c,b; + x[0]+=n; + k=x.length; + c=0; + for (i=0;i<k;i++) { + c+=x[i]; + b=0; + if (c<0) { + b=-(c>>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + if (!c) return; //stop carrying as soon as the carry_ is zero + } +} + +//right shift bigInt x by n bits. 0 <= n < bpe. +function rightShift_(x,n) { + var i; + var k=Math.floor(n/bpe); + if (k) { + for (i=0;i<x.length-k;i++) //right shift x by k elements + x[i]=x[i+k]; + for (;i<x.length;i++) + x[i]=0; + n%=bpe; + } + for (i=0;i<x.length-1;i++) { + x[i]=mask & ((x[i+1]<<(bpe-n)) | (x[i]>>n)); + } + x[i]>>=n; +} + +//do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement +function halve_(x) { + var i; + for (i=0;i<x.length-1;i++) { + x[i]=mask & ((x[i+1]<<(bpe-1)) | (x[i]>>1)); + } + x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same +} + +//left shift bigInt x by n bits. +function leftShift_(x,n) { + var i; + var k=Math.floor(n/bpe); + if (k) { + for (i=x.length; i>=k; i--) //left shift x by k elements + x[i]=x[i-k]; + for (;i>=0;i--) + x[i]=0; + n%=bpe; + } + if (!n) + return; + for (i=x.length-1;i>0;i--) { + x[i]=mask & ((x[i]<<n) | (x[i-1]>>(bpe-n))); + } + x[i]=mask & (x[i]<<n); +} + +//do x=x*n where x is a bigInt and n is an integer. +//x must be large enough to hold the result. +function multInt_(x,n) { + var i,k,c,b; + if (!n) + return; + k=x.length; + c=0; + for (i=0;i<k;i++) { + c+=x[i]*n; + b=0; + if (c<0) { + b=-(c>>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + } +} + +//do x=floor(x/n) for bigInt x and integer n, and return the remainder +function divInt_(x,n) { + var i,r=0,s; + for (i=x.length-1;i>=0;i--) { + s=r*radix+x[i]; + x[i]=Math.floor(s/n); + r=s%n; + } + return r; +} + +//do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b. +//x must be large enough to hold the answer. +function linComb_(x,y,a,b) { + var i,c,k,kk; + k=x.length<y.length ? x.length : y.length; + kk=x.length; + for (c=0,i=0;i<k;i++) { + c+=a*x[i]+b*y[i]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;i<kk;i++) { + c+=a*x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys. +//x must be large enough to hold the answer. +function linCombShift_(x,y,b,ys) { + var i,c,k,kk; + k=x.length<ys+y.length ? x.length : ys+y.length; + kk=x.length; + for (c=0,i=ys;i<k;i++) { + c+=x[i]+b*y[i-ys]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;c && i<kk;i++) { + c+=x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. +//x must be large enough to hold the answer. +function addShift_(x,y,ys) { + var i,c,k,kk; + k=x.length<ys+y.length ? x.length : ys+y.length; + kk=x.length; + for (c=0,i=ys;i<k;i++) { + c+=x[i]+y[i-ys]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;c && i<kk;i++) { + c+=x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. +//x must be large enough to hold the answer. +function subShift_(x,y,ys) { + var i,c,k,kk; + k=x.length<ys+y.length ? x.length : ys+y.length; + kk=x.length; + for (c=0,i=ys;i<k;i++) { + c+=x[i]-y[i-ys]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;c && i<kk;i++) { + c+=x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x-y for bigInts x and y. +//x must be large enough to hold the answer. +//negative answers will be 2s complement +function sub_(x,y) { + var i,c,k,kk; + k=x.length<y.length ? x.length : y.length; + for (c=0,i=0;i<k;i++) { + c+=x[i]-y[i]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;c && i<x.length;i++) { + c+=x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x+y for bigInts x and y. +//x must be large enough to hold the answer. +function add_(x,y) { + var i,c,k,kk; + k=x.length<y.length ? x.length : y.length; + for (c=0,i=0;i<k;i++) { + c+=x[i]+y[i]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;c && i<x.length;i++) { + c+=x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x*y for bigInts x and y. This is faster when y<x. +function mult_(x,y) { + var i; + if (ss.length!=2*x.length) + ss=new Array(2*x.length); + copyInt_(ss,0); + for (i=0;i<y.length;i++) + if (y[i]) + linCombShift_(ss,x,y[i],i); //ss=1*ss+y[i]*(x<<(i*bpe)) + copy_(x,ss); +} + +//do x=x mod n for bigInts x and n. +function mod_(x,n) { + if (s4.length!=x.length) + s4=dup(x); + else + copy_(s4,x); + if (s5.length!=x.length) + s5=dup(x); + divide_(s4,n,s5,x); //x = remainder of s4 / n +} + +//do x=x*y mod n for bigInts x,y,n. +//for greater speed, let y<x. +function multMod_(x,y,n) { + var i; + if (s0.length!=2*x.length) + s0=new Array(2*x.length); + copyInt_(s0,0); + for (i=0;i<y.length;i++) + if (y[i]) + linCombShift_(s0,x,y[i],i); //s0=1*s0+y[i]*(x<<(i*bpe)) + mod_(s0,n); + copy_(x,s0); +} + +//do x=x*x mod n for bigInts x,n. +function squareMod_(x,n) { + var i,j,d,c,kx,kn,k; + for (kx=x.length; kx>0 && !x[kx-1]; kx--); //ignore leading zeros in x + k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n + if (s0.length!=k) + s0=new Array(k); + copyInt_(s0,0); + for (i=0;i<kx;i++) { + c=s0[2*i]+x[i]*x[i]; + s0[2*i]=c & mask; + c>>=bpe; + for (j=i+1;j<kx;j++) { + c=s0[i+j]+2*x[i]*x[j]+c; + s0[i+j]=(c & mask); + c>>=bpe; + } + s0[i+kx]=c; + } + mod_(s0,n); + copy_(x,s0); +} + +//return x with exactly k leading zero elements +function trim(x,k) { + var i,y; + for (i=x.length; i>0 && !x[i-1]; i--); + y=new Array(i+k); + copy_(y,x); + return y; +} + +//do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1. +//this is faster when n is odd. x usually needs to have as many elements as n. +function powMod_(x,y,n) { + var k1,k2,kn,np; + if(s7.length!=n.length) + s7=dup(n); + + //for even modulus, use a simple square-and-multiply algorithm, + //rather than using the more complex Montgomery algorithm. + if ((n[0]&1)==0) { + copy_(s7,x); + copyInt_(x,1); + while(!equalsInt(y,0)) { + if (y[0]&1) + multMod_(x,s7,n); + divInt_(y,2); + squareMod_(s7,n); + } + return; + } + + //calculate np from n for the Montgomery multiplications + copyInt_(s7,0); + for (kn=n.length;kn>0 && !n[kn-1];kn--); + np=radix-inverseModInt_(modInt(n,radix),radix); + s7[kn]=1; + multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n + + if (s3.length!=x.length) + s3=dup(x); + else + copy_(s3,x); + + for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y + if (y[k1]==0) { //anything to the 0th power is 1 + copyInt_(x,1); + return; + } + for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1] + for (;;) { + if (!(k2>>=1)) { //look at next bit of y + k1--; + if (k1<0) { + mont_(x,one,n,np); + return; + } + k2=1<<(bpe-1); + } + mont_(x,x,n,np); + + if (k2 & y[k1]) //if next bit is a 1 + mont_(x,s3,n,np); + } +} + +//do x=x*y*Ri mod n for bigInts x,y,n, +// where Ri = 2**(-kn*bpe) mod n, and kn is the +// number of elements in the n array, not +// counting leading zeros. +//x must be large enough to hold the answer. +//It's OK if x and y are the same variable. +//must have: +// x,y < n +// n is odd +// np = -(n^(-1)) mod radix +function mont_(x,y,n,np) { + var i,j,c,ui,t; + var kn=n.length; + var ky=y.length; + + if (sa.length!=kn) + sa=new Array(kn); + + for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n + //this function sometimes gives wrong answers when the next line is uncommented + //for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y + + copyInt_(sa,0); + + //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large keys + for (i=0; i<kn; i++) { + t=sa[0]+x[i]*y[0]; + ui=((t & mask) * np) & mask; //the inner "& mask" is needed on Macintosh MSIE, but not windows MSIE + c=(t+ui*n[0]) >> bpe; + t=x[i]; + + //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe + for (j=1;j<ky;j++) { + c+=sa[j]+t*y[j]+ui*n[j]; + sa[j-1]=c & mask; + c>>=bpe; + } + for (;j<kn;j++) { + c+=sa[j]+ui*n[j]; + sa[j-1]=c & mask; + c>>=bpe; + } + sa[j-1]=c & mask; + } + + if (!greater(n,sa)) + sub_(sa,n); + copy_(x,sa); +} + + + + +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# + + + + + +//############################################################################# + +Clipperz.Crypto.BigInt = function (aValue, aBase) { + var base; + var value; + + if (typeof(aValue) == 'object') { + this._internalValue = aValue; + } else { + if (typeof(aValue) == 'undefined') { + value = "0"; + } else { + value = aValue + ""; + } + + if (typeof(aBase) == 'undefined') { + base = 10; + } else { + base = aBase; + } + + this._internalValue = str2bigInt(value, base, 1, 1); + } + + return this; +} + +//============================================================================= + +MochiKit.Base.update(Clipperz.Crypto.BigInt.prototype, { + + 'clone': function() { + return new Clipperz.Crypto.BigInt(this.internalValue()); + }, + + //------------------------------------------------------------------------- + + 'internalValue': function () { + return this._internalValue; + }, + + //------------------------------------------------------------------------- + + 'isBigInt': true, + + //------------------------------------------------------------------------- + + 'toString': function(aBase) { + return this.asString(aBase); + }, + + //------------------------------------------------------------------------- + + 'asString': function (aBase, minimumLength) { + var result; + var base; + + if (typeof(aBase) == 'undefined') { + base = 10; + } else { + base = aBase; + } + + result = bigInt2str(this.internalValue(), base).toLowerCase(); + + if ((typeof(minimumLength) != 'undefined') && (result.length < minimumLength)) { + var i, c; +//MochiKit.Logging.logDebug(">>> FIXING BigInt.asString length issue") + c = (minimumLength - result.length); + for (i=0; i<c; i++) { + result = '0' + result; + } + } + + return result; + }, + + //------------------------------------------------------------------------- + + 'asByteArray': function() { + return new Clipperz.ByteArray("0x" + this.asString(16), 16); + }, + + //------------------------------------------------------------------------- + + 'equals': function (aValue) { + var result; + + if (aValue.isBigInt) { + result = equals(this.internalValue(), aValue.internalValue()); + } else if (typeof(aValue) == "number") { + result = equalsInt(this.internalValue(), aValue); + } else { + throw Clipperz.Crypt.BigInt.exception.UnknownType; + } + + return result; + }, + + //------------------------------------------------------------------------- + + 'compare': function(aValue) { +/* + var result; + var thisAsString; + var aValueAsString; + + thisAsString = this.asString(10); + aValueAsString = aValue.asString(10); + + result = MochiKit.Base.compare(thisAsString.length, aValueAsString.length); + if (result == 0) { + result = MochiKit.Base.compare(thisAsString, aValueAsString); + } + + return result; +*/ + var result; + + if (equals(this.internalValue(), aValue.internalValue())) { + result = 0; + } else if (greater(this.internalValue(), aValue.internalValue())) { + result = 1; + } else { + result = -1; + } + + return result; + }, + + //------------------------------------------------------------------------- + + 'add': function (aValue) { + var result; + + if (aValue.isBigInt) { + result = add(this.internalValue(), aValue.internalValue()); + } else { + result = addInt(this.internalValue(), aValue); + } + + return new Clipperz.Crypto.BigInt(result); + }, + + //------------------------------------------------------------------------- + + 'subtract': function (aValue) { + var result; + var value; + + if (aValue.isBigInt) { + value = aValue; + } else { + value = new Clipperz.Crypto.BigInt(aValue); + } + + result = sub(this.internalValue(), value.internalValue()); + + return new Clipperz.Crypto.BigInt(result); + }, + + //------------------------------------------------------------------------- + + 'multiply': function (aValue, aModule) { + var result; + var value; + + if (aValue.isBigInt) { + value = aValue; + } else { + value = new Clipperz.Crypto.BigInt(aValue); + } + + if (typeof(aModule) == 'undefined') { + result = mult(this.internalValue(), value.internalValue()); + } else { + if (greater(this.internalValue(), value.internalValue())) { + result = multMod(this.internalValue(), value.internalValue(), aModule); + } else { + result = multMod(value.internalValue(), this.internalValue(), aModule); + } + } + + return new Clipperz.Crypto.BigInt(result); + }, + + //------------------------------------------------------------------------- + + 'module': function (aModule) { + var result; + var module; + + if (aModule.isBigInt) { + module = aModule; + } else { + module = new Clipperz.Crypto.BigInt(aModule); + } + + result = mod(this.internalValue(), module.internalValue()); + + return new Clipperz.Crypto.BigInt(result); + }, + + //------------------------------------------------------------------------- + + 'powerModule': function(aValue, aModule) { + var result; + var value; + var module; + + if (aValue.isBigInt) { + value = aValue; + } else { + value = new Clipperz.Crypto.BigInt(aValue); + } + + if (aModule.isBigInt) { + module = aModule; + } else { + module = new Clipperz.Crypto.BigInt(aModule); + } + + if (aValue == -1) { + result = inverseMod(this.internalValue(), module.internalValue()); + } else { + result = powMod(this.internalValue(), value.internalValue(), module.internalValue()); + } + + return new Clipperz.Crypto.BigInt(result); + }, + + //------------------------------------------------------------------------- + + 'xor': function(aValue) { + var result; + var thisByteArray; + var aValueByteArray; + var xorArray; + + thisByteArray = new Clipperz.ByteArray("0x" + this.asString(16), 16); + aValueByteArray = new Clipperz.ByteArray("0x" + aValue.asString(16), 16); + xorArray = thisByteArray.xorMergeWithBlock(aValueByteArray, 'right'); + result = new Clipperz.Crypto.BigInt(xorArray.toHexString(), 16); + + return result; + }, + + //------------------------------------------------------------------------- + + 'shiftLeft': function(aNumberOfBitsToShift) { + var result; + var internalResult; + var wholeByteToShift; + var bitsLeftToShift; + + wholeByteToShift = Math.floor(aNumberOfBitsToShift / 8); + bitsLeftToShift = aNumberOfBitsToShift % 8; + + if (wholeByteToShift == 0) { + internalResult = this.internalValue(); + } else { + var hexValue; + var i,c; + + hexValue = this.asString(16); + c = wholeByteToShift; + for (i=0; i<c; i++) { + hexValue += "00"; + } + internalResult = str2bigInt(hexValue, 16, 1, 1); + } + + if (bitsLeftToShift > 0) { + leftShift_(internalResult, bitsLeftToShift); + } + result = new Clipperz.Crypto.BigInt(internalResult); + + return result; + }, + + //------------------------------------------------------------------------- + + 'bitSize': function() { + return bitSize(this.internalValue()); + }, + + //------------------------------------------------------------------------- + + 'isBitSet': function(aBitPosition) { + var result; + + if (this.asByteArray().bitAtIndex(aBitPosition) == 0) { + result = false; + } else { + result = true; + }; + + return result; + }, + + //------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" + +}); + +//############################################################################# + +Clipperz.Crypto.BigInt.randomPrime = function(aBitSize) { + return new Clipperz.Crypto.BigInt(randTruePrime(aBitSize)); +} + +//############################################################################# +//############################################################################# + +Clipperz.Crypto.BigInt.ZERO = new Clipperz.Crypto.BigInt(0); + +//############################################################################# + +Clipperz.Crypto.BigInt.equals = function(a, b) { + return a.equals(b); +} + +Clipperz.Crypto.BigInt.add = function(a, b) { + return a.add(b); +} + +Clipperz.Crypto.BigInt.subtract = function(a, b) { + return a.subtract(b); +} + +Clipperz.Crypto.BigInt.multiply = function(a, b, module) { + return a.multiply(b, module); +} + +Clipperz.Crypto.BigInt.module = function(a, module) { + return a.module(module); +} + +Clipperz.Crypto.BigInt.powerModule = function(a, b, module) { + return a.powerModule(b, module); +} + +Clipperz.Crypto.BigInt.exception = { + UnknownType: new MochiKit.Base.NamedError("Clipperz.Crypto.BigInt.exception.UnknownType") +} diff --git a/frontend/beta/js/Clipperz/Crypto/BigInt_scoped.js b/frontend/beta/js/Clipperz/Crypto/BigInt_scoped.js new file mode 100644 index 0000000..e91e823 --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/BigInt_scoped.js @@ -0,0 +1,1649 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +if (typeof(Clipperz) == 'undefined') { Clipperz = {}; } +if (typeof(Clipperz.Crypto) == 'undefined') { Clipperz.Crypto = {}; } + +if (typeof(Leemon) == 'undefined') { Leemon = {}; } +if (typeof(Baird.Crypto) == 'undefined') { Baird.Crypto = {}; } +if (typeof(Baird.Crypto.BigInt) == 'undefined') { Baird.Crypto.BigInt = {}; } + + +//############################################################################# +// Downloaded on March 05, 2007 from http://www.leemon.com/crypto/BigInt.js +//############################################################################# + +//////////////////////////////////////////////////////////////////////////////////////// +// Big Integer Library v. 5.0 +// Created 2000, last modified 2006 +// Leemon Baird +// www.leemon.com +// +// This file is public domain. You can use it for any purpose without restriction. +// I do not guarantee that it is correct, so use it at your own risk. If you use +// it for something interesting, I'd appreciate hearing about it. If you find +// any bugs or make any improvements, I'd appreciate hearing about those too. +// It would also be nice if my name and address were left in the comments. +// But none of that is required. +// +// This code defines a bigInt library for arbitrary-precision integers. +// A bigInt is an array of integers storing the value in chunks of bpe bits, +// little endian (buff[0] is the least significant word). +// Negative bigInts are stored two's complement. +// Some functions assume their parameters have at least one leading zero element. +// Functions with an underscore at the end of the name have unpredictable behavior in case of overflow, +// so the caller must make sure overflow won't happen. +// For each function where a parameter is modified, that same +// variable must not be used as another argument too. +// So, you cannot square x by doing multMod_(x,x,n). +// You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n). +// +// These functions are designed to avoid frequent dynamic memory allocation in the inner loop. +// For most functions, if it needs a BigInt as a local variable it will actually use +// a global, and will only allocate to it when it's not the right size. This ensures +// that when a function is called repeatedly with same-sized parameters, it only allocates +// memory on the first call. +// +// Note that for cryptographic purposes, the calls to Math.random() must +// be replaced with calls to a better pseudorandom number generator. +// +// In the following, "bigInt" means a bigInt with at least one leading zero element, +// and "integer" means a nonnegative integer less than radix. In some cases, integer +// can be negative. Negative bigInts are 2s complement. +// +// The following functions do not modify their inputs, but dynamically allocate memory every time they are called: +// +// function bigInt2str(x,base) //convert a bigInt into a string in a given base, from base 2 up to base 95 +// function dup(x) //returns a copy of bigInt x +// function findPrimes(n) //return array of all primes less than integer n +// function int2bigInt(t,n,m) //convert integer t to a bigInt with at least n bits and m array elements +// function str2bigInt(s,b,n,m) //convert string s in base b to a bigInt with at least n bits and m array elements +// function trim(x,k) //return a copy of x with exactly k leading zero elements +// +// The following functions do not modify their inputs, so there is never a problem with the result being too big: +// +// function bitSize(x) //returns how many bits long the bigInt x is, not counting leading zeros +// function equals(x,y) //is the bigInt x equal to the bigint y? +// function equalsInt(x,y) //is bigint x equal to integer y? +// function greater(x,y) //is x>y? (x and y are nonnegative bigInts) +// function greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y? +// function isZero(x) //is the bigInt x equal to zero? +// function millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime (as opposed to definitely composite)? +// function modInt(x,n) //return x mod n for bigInt x and integer n. +// function negative(x) //is bigInt x negative? +// +// The following functions do not modify their inputs, but allocate memory and call functions with underscores +// +// function add(x,y) //return (x+y) for bigInts x and y. +// function addInt(x,n) //return (x+n) where x is a bigInt and n is an integer. +// function expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed +// function inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null +// function mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n. +// function mult(x,y) //return x*y for bigInts x and y. This is faster when y<x. +// function multMod(x,y,n) //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x. +// function powMod(x,y,n) //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n. +// function randTruePrime(k) //return a new, random, k-bit, true prime using Maurer's algorithm. +// function sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement +// +// The following functions write a bigInt result to one of the parameters, but +// the result is never bigger than the original, so there can't be overflow problems: +// +// function divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder +// function GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed). +// function halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement +// function mod_(x,n) //do x=x mod n for bigInts x and n. +// function rightShift_(x,n) //right shift bigInt x by n bits. 0 <= n < bpe. +// +// The following functions write a bigInt result to one of the parameters. The caller is responsible for +// ensuring it is large enough to hold the result. +// +// function addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer +// function add_(x,y) //do x=x+y for bigInts x and y +// function addShift_(x,y,ys) //do x=x+(y<<(ys*bpe)) +// function copy_(x,y) //do x=y on bigInts x and y +// function copyInt_(x,n) //do x=n on bigInt x and integer n +// function carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits. +// function divide_(x,y,q,r) //divide_ x by y giving quotient q and remainder r +// function eGCD_(x,y,d,a,b) //sets a,b,d to positive big integers such that d = GCD_(x,y) = a*x-b*y +// function inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist +// function inverseModInt_(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse +// function leftShift_(x,n) //left shift bigInt x by n bits. n<bpe. +// function linComb_(x,y,a,b) //do x=a*x+b*y for bigInts x and y and integers a and b +// function linCombShift_(x,y,b,ys) //do x=x+b*(y<<(ys*bpe)) for bigInts x and y, and integers b and ys +// function mont_(x,y,n,np) //Montgomery multiplication (see comments where the function is defined) +// function mult_(x,y) //do x=x*y for bigInts x and y. +// function multInt_(x,n) //do x=x*n where x is a bigInt and n is an integer. +// function multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n. +// function powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1. +// function randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1. +// function randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb. +// function squareMod_(x,n) //do x=x*x mod n for bigInts x,n +// function sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement. +// function subShift_(x,y,ys) //do x=x-(y<<(ys*bpe)). Negative answers will be 2s complement. +// +// The following functions are based on algorithms from the _Handbook of Applied Cryptography_ +// powMod_() = algorithm 14.94, Montgomery exponentiation +// eGCD_,inverseMod_() = algorithm 14.61, Binary extended GCD_ +// GCD_() = algorothm 14.57, Lehmer's algorithm +// mont_() = algorithm 14.36, Montgomery multiplication +// divide_() = algorithm 14.20 Multiple-precision division +// squareMod_() = algorithm 14.16 Multiple-precision squaring +// randTruePrime_() = algorithm 4.62, Maurer's algorithm +// millerRabin() = algorithm 4.24, Miller-Rabin algorithm +// +// Profiling shows: +// randTruePrime_() spends: +// 10% of its time in calls to powMod_() +// 85% of its time in calls to millerRabin() +// millerRabin() spends: +// 99% of its time in calls to powMod_() (always with a base of 2) +// powMod_() spends: +// 94% of its time in calls to mont_() (almost always with x==y) +// +// This suggests there are several ways to speed up this library slightly: +// - convert powMod_ to use a Montgomery form of k-ary window (or maybe a Montgomery form of sliding window) +// -- this should especially focus on being fast when raising 2 to a power mod n +// - convert randTruePrime_() to use a minimum r of 1/3 instead of 1/2 with the appropriate change to the test +// - tune the parameters in randTruePrime_(), including c, m, and recLimit +// - speed up the single loop in mont_() that takes 95% of the runtime, perhaps by reducing checking +// within the loop when all the parameters are the same length. +// +// There are several ideas that look like they wouldn't help much at all: +// - replacing trial division in randTruePrime_() with a sieve (that speeds up something taking almost no time anyway) +// - increase bpe from 15 to 30 (that would help if we had a 32*32->64 multiplier, but not with JavaScript's 32*32->32) +// - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square +// followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that +// method would be slower. This is unfortunate because the code currently spends almost all of its time +// doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring +// would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded +// sentences that seem to imply it's faster to do a non-modular square followed by a single +// Montgomery reduction, but that's obviously wrong. +//////////////////////////////////////////////////////////////////////////////////////// + +// +// The whole library has been moved into the Baird.Crypto.BigInt scope by Giulio Cesare Solaroli <giulio.cesare@clipperz.com> +// +Baird.Crypto.BigInt.VERSION = "5.0"; +Baird.Crypto.BigInt.NAME = "Baird.Crypto.BigInt"; + +MochiKit.Base.update(Baird.Crypto.BigInt, { + //globals + 'bpe': 0, //bits stored per array element + 'mask': 0, //AND this with an array element to chop it down to bpe bits + 'radix': Baird.Crypto.BigInt.mask + 1, //equals 2^bpe. A single 1 bit to the left of the last bit of mask. + + //the digits for converting to different bases + 'digitsStr': '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-', + +//initialize the global variables +for (bpe=0; (1<<(bpe+1)) > (1<<bpe); bpe++); //bpe=number of bits in the mantissa on this platform +bpe>>=1; //bpe=number of bits in one element of the array representing the bigInt +mask=(1<<bpe)-1; //AND the mask with an integer to get its bpe least significant bits +radix=mask+1; //2^bpe. a single 1 bit to the left of the first bit of mask +one=int2bigInt(1,1,1); //constant used in powMod_() + +//the following global variables are scratchpad memory to +//reduce dynamic memory allocation in the inner loop +t=new Array(0); +ss=t; //used in mult_() +s0=t; //used in multMod_(), squareMod_() +s1=t; //used in powMod_(), multMod_(), squareMod_() +s2=t; //used in powMod_(), multMod_() +s3=t; //used in powMod_() +s4=t; s5=t; //used in mod_() +s6=t; //used in bigInt2str() +s7=t; //used in powMod_() +T=t; //used in GCD_() +sa=t; //used in mont_() +mr_x1=t; mr_r=t; mr_a=t; //used in millerRabin() +eg_v=t; eg_u=t; eg_A=t; eg_B=t; eg_C=t; eg_D=t; //used in eGCD_(), inverseMod_() +md_q1=t; md_q2=t; md_q3=t; md_r=t; md_r1=t; md_r2=t; md_tt=t; //used in mod_() + +primes=t; pows=t; s_i=t; s_i2=t; s_R=t; s_rm=t; s_q=t; s_n1=t; + s_a=t; s_r2=t; s_n=t; s_b=t; s_d=t; s_x1=t; s_x2=t, s_aa=t; //used in randTruePrime_() + +//////////////////////////////////////////////////////////////////////////////////////// + + //return array of all primes less than integer n + 'findPrimes': function(n) { + var i,s,p,ans; + s=new Array(n); + for (i=0;i<n;i++) + s[i]=0; + s[0]=2; + p=0; //first p elements of s are primes, the rest are a sieve + for(;s[p]<n;) { //s[p] is the pth prime + for(i=s[p]*s[p]; i<n; i+=s[p]) //mark multiples of s[p] + s[i]=1; + p++; + s[p]=s[p-1]+1; + for(; s[p]<n && s[s[p]]; s[p]++); //find next prime (where s[p]==0) + } + ans=new Array(p); + for(i=0;i<p;i++) + ans[i]=s[i]; + return ans; + }, + + //does a single round of Miller-Rabin base b consider x to be a possible prime? + //x is a bigInt, and b is an integer + 'millerRabin': function(x,b) { + var i,j,k,s; + + if (mr_x1.length!=x.length) { + mr_x1=dup(x); + mr_r=dup(x); + mr_a=dup(x); + } + + copyInt_(mr_a,b); + copy_(mr_r,x); + copy_(mr_x1,x); + + addInt_(mr_r,-1); + addInt_(mr_x1,-1); + + //s=the highest power of two that divides mr_r + k=0; + for (i=0;i<mr_r.length;i++) + for (j=1;j<mask;j<<=1) + if (x[i] & j) { + s=(k<mr_r.length+bpe ? k : 0); + i=mr_r.length; + j=mask; + } else + k++; + + if (s) + rightShift_(mr_r,s); + + powMod_(mr_a,mr_r,x); + + if (!equalsInt(mr_a,1) && !equals(mr_a,mr_x1)) { + j=1; + while (j<=s-1 && !equals(mr_a,mr_x1)) { + squareMod_(mr_a,x); + if (equalsInt(mr_a,1)) { + return 0; + } + j++; + } + if (!equals(mr_a,mr_x1)) { + return 0; + } + } + + return 1; + }, + + //returns how many bits long the bigInt is, not counting leading zeros. + 'bitSize': function(x) { + var j,z,w; + for (j=x.length-1; (x[j]==0) && (j>0); j--); + for (z=0,w=x[j]; w; (w>>=1),z++); + z+=bpe*j; + return z; + }, + + //return a copy of x with at least n elements, adding leading zeros if needed + 'expand': function(x,n) { + var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0); + copy_(ans,x); + return ans; + }, + + //return a k-bit true random prime using Maurer's algorithm. + 'randTruePrime': function(k) { + var ans=int2bigInt(0,k,0); + randTruePrime_(ans,k); + return trim(ans,1); + }, + + //return a new bigInt equal to (x mod n) for bigInts x and n. + 'mod': function(x,n) { + var ans=dup(x); + mod_(ans,n); + return trim(ans,1); + }, + + //return (x+n) where x is a bigInt and n is an integer. + 'addInt': function(x,n) { + var ans=expand(x,x.length+1); + addInt_(ans,n); + return trim(ans,1); + }, + + //return x*y for bigInts x and y. This is faster when y<x. + 'mult': function(x,y) { + var ans=expand(x,x.length+y.length); + mult_(ans,y); + return trim(ans,1); + }, + + //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n. + 'powMod': function(x,y,n) { + var ans=expand(x,n.length); + powMod_(ans,trim(y,2),trim(n,2),0); //this should work without the trim, but doesn't + return trim(ans,1); + }, + + //return (x-y) for bigInts x and y. Negative answers will be 2s complement + 'sub': function(x,y) { + var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); + sub_(ans,y); + return trim(ans,1); + }, + + //return (x+y) for bigInts x and y. + 'add': function(x,y) { + var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); + add_(ans,y); + return trim(ans,1); + }, + + //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null + 'inverseMod': function(x,n) { + var ans=expand(x,n.length); + var s; + s=inverseMod_(ans,n); + return s ? trim(ans,1) : null; + }, + + //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x. + 'multMod': function(x,y,n) { + var ans=expand(x,n.length); + multMod_(ans,y,n); + return trim(ans,1); + }, + + //generate a k-bit true random prime using Maurer's algorithm, + //and put it into ans. The bigInt ans must be large enough to hold it. + 'randTruePrime_': function(ans,k) { + var c,m,pm,dd,j,r,B,divisible,z,zz,recSize; + + if (primes.length==0) + primes=findPrimes(30000); //check for divisibility by primes <=30000 + + if (pows.length==0) { + pows=new Array(512); + for (j=0;j<512;j++) { + pows[j]=Math.pow(2,j/511.-1.); + } + } + + //c and m should be tuned for a particular machine and value of k, to maximize speed + //this was: c=primes[primes.length-1]/k/k; //check using all the small primes. (c=0.1 in HAC) + c=0.1; + m=20; //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits + recLimit=20; /*must be at least 2 (was 29)*/ //stop recursion when k <=recLimit + + if (s_i2.length!=ans.length) { + s_i2=dup(ans); + s_R =dup(ans); + s_n1=dup(ans); + s_r2=dup(ans); + s_d =dup(ans); + s_x1=dup(ans); + s_x2=dup(ans); + s_b =dup(ans); + s_n =dup(ans); + s_i =dup(ans); + s_rm=dup(ans); + s_q =dup(ans); + s_a =dup(ans); + s_aa=dup(ans); + } + + if (k <= recLimit) { //generate small random primes by trial division up to its square root + pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k) + copyInt_(ans,0); + for (dd=1;dd;) { + dd=0; + ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<<k)); //random, k-bit, odd integer, with msb 1 + for (j=1;(j<primes.length) && ((primes[j]&pm)==primes[j]);j++) { //trial division by all primes 3...sqrt(2^k) + if (0==(ans[0]%primes[j])) { + dd=1; + break; + } + } + } + carry_(ans); + return; + } + + B=c*k*k; //try small primes up to B (or all the primes[] array if the largest is less than B). + if (k>2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits + for (r=1; k-k*r<=m; ) + r=pows[Math.floor(Math.random()*512)]; //r=Math.pow(2,Math.random()-1); + else + r=.5; + + //simulation suggests the more complex algorithm using r=.333 is only slightly faster. + + recSize=Math.floor(r*k)+1; + + randTruePrime_(s_q,recSize); + copyInt_(s_i2,0); + s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2) + divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q)) + + z=bitSize(s_i); + + for (;;) { + for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1] + randBigInt_(s_R,z,0); + if (greater(s_i,s_R)) + break; + } //now s_R is in the range [0,s_i-1] + addInt_(s_R,1); //now s_R is in the range [1,s_i] + add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i] + + copy_(s_n,s_q); + mult_(s_n,s_R); + multInt_(s_n,2); + addInt_(s_n,1); //s_n=2*s_R*s_q+1 + + copy_(s_r2,s_R); + multInt_(s_r2,2); //s_r2=2*s_R + + //check s_n for divisibility by small primes up to B + for (divisible=0,j=0; (j<primes.length) && (primes[j]<B); j++) + if (modInt(s_n,primes[j])==0) { + divisible=1; + break; + } + + if (!divisible) //if it passes small primes check, then try a single Miller-Rabin base 2 + if (!millerRabin(s_n,2)) //this line represents 75% of the total runtime for randTruePrime_ + divisible=1; + + if (!divisible) { //if it passes that test, continue checking s_n + addInt_(s_n,-3); + for (j=s_n.length-1;(s_n[j]==0) && (j>0); j--); //strip leading zeros + for (zz=0,w=s_n[j]; w; (w>>=1),zz++); + zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros + for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1] + randBigInt_(s_a,zz,0); + if (greater(s_n,s_a)) + break; + } //now s_a is in the range [0,s_n-1] + addInt_(s_n,3); //now s_a is in the range [0,s_n-4] + addInt_(s_a,2); //now s_a is in the range [2,s_n-2] + copy_(s_b,s_a); + copy_(s_n1,s_n); + addInt_(s_n1,-1); + powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n + addInt_(s_b,-1); + if (isZero(s_b)) { + copy_(s_b,s_a); + powMod_(s_b,s_r2,s_n); + addInt_(s_b,-1); + copy_(s_aa,s_n); + copy_(s_d,s_b); + GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime + if (equalsInt(s_d,1)) { + copy_(ans,s_aa); + return; //if we've made it this far, then s_n is absolutely guaranteed to be prime + } + } + } + } + }, + + //set b to an n-bit random BigInt. If s=1, then nth bit (most significant bit) is set to 1. + //array b must be big enough to hold the result. Must have n>=1 + 'randBigInt_': function(b,n,s) { + var i,a; + for (i=0;i<b.length;i++) + b[i]=0; + a=Math.floor((n-1)/bpe)+1; //# array elements to hold the BigInt + for (i=0;i<a;i++) { + b[i]=Math.floor(Math.random()*(1<<(bpe-1))); + } + b[a-1] &= (2<<((n-1)%bpe))-1; + if (s) + b[a-1] |= (1<<((n-1)%bpe)); + }, + + //set x to the greatest common divisor of x and y. + //x,y are bigInts with the same number of elements. y is destroyed. + 'GCD_': function(x,y) { + var i,xp,yp,A,B,C,D,q,sing; + if (T.length!=x.length) + T=dup(x); + + sing=1; + while (sing) { //while y has nonzero elements other than y[0] + sing=0; + for (i=1;i<y.length;i++) //check if y has nonzero elements other than 0 + if (y[i]) { + sing=1; + break; + } + if (!sing) break; //quit when y all zero elements except possibly y[0] + + for (i=x.length;!x[i] && i>=0;i--); //find most significant element of x + xp=x[i]; + yp=y[i]; + A=1; B=0; C=0; D=1; + while ((yp+C) && (yp+D)) { + q =Math.floor((xp+A)/(yp+C)); + qp=Math.floor((xp+B)/(yp+D)); + if (q!=qp) + break; + t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp) + t= B-q*D; B=D; D=t; + t=xp-q*yp; xp=yp; yp=t; + } + if (B) { + copy_(T,x); + linComb_(x,y,A,B); //x=A*x+B*y + linComb_(y,T,D,C); //y=D*y+C*T + } else { + mod_(x,y); + copy_(T,x); + copy_(x,y); + copy_(y,T); + } + } + if (y[0]==0) + return; + t=modInt(x,y[0]); + copyInt_(x,y[0]); + y[0]=t; + while (y[0]) { + x[0]%=y[0]; + t=x[0]; x[0]=y[0]; y[0]=t; + } + }, + +//do x=x**(-1) mod n, for bigInts x and n. +//If no inverse exists, it sets x to zero and returns 0, else it returns 1. +//The x array must be at least as large as the n array. +function inverseMod_(x,n) { + var k=1+2*Math.max(x.length,n.length); + + if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist + copyInt_(x,0); + return 0; + } + + if (eg_u.length!=k) { + eg_u=new Array(k); + eg_v=new Array(k); + eg_A=new Array(k); + eg_B=new Array(k); + eg_C=new Array(k); + eg_D=new Array(k); + } + + copy_(eg_u,x); + copy_(eg_v,n); + copyInt_(eg_A,1); + copyInt_(eg_B,0); + copyInt_(eg_C,0); + copyInt_(eg_D,1); + for (;;) { + while(!(eg_u[0]&1)) { //while eg_u is even + halve_(eg_u); + if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2 + halve_(eg_A); + halve_(eg_B); + } else { + add_(eg_A,n); halve_(eg_A); + sub_(eg_B,x); halve_(eg_B); + } + } + + while (!(eg_v[0]&1)) { //while eg_v is even + halve_(eg_v); + if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2 + halve_(eg_C); + halve_(eg_D); + } else { + add_(eg_C,n); halve_(eg_C); + sub_(eg_D,x); halve_(eg_D); + } + } + + if (!greater(eg_v,eg_u)) { //eg_v <= eg_u + sub_(eg_u,eg_v); + sub_(eg_A,eg_C); + sub_(eg_B,eg_D); + } else { //eg_v > eg_u + sub_(eg_v,eg_u); + sub_(eg_C,eg_A); + sub_(eg_D,eg_B); + } + + if (equalsInt(eg_u,0)) { + if (negative(eg_C)) //make sure answer is nonnegative + add_(eg_C,n); + copy_(x,eg_C); + + if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse + copyInt_(x,0); + return 0; + } + return 1; + } + } +} + +//return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse +function inverseModInt_(x,n) { + var a=1,b=0,t; + for (;;) { + if (x==1) return a; + if (x==0) return 0; + b-=a*Math.floor(n/x); + n%=x; + + if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to += + if (n==0) return 0; + a-=b*Math.floor(x/n); + x%=n; + } +} + +//Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that: +// v = GCD_(x,y) = a*x-b*y +//The bigInts v, a, b, must have exactly as many elements as the larger of x and y. +function eGCD_(x,y,v,a,b) { + var g=0; + var k=Math.max(x.length,y.length); + if (eg_u.length!=k) { + eg_u=new Array(k); + eg_A=new Array(k); + eg_B=new Array(k); + eg_C=new Array(k); + eg_D=new Array(k); + } + while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even + halve_(x); + halve_(y); + g++; + } + copy_(eg_u,x); + copy_(v,y); + copyInt_(eg_A,1); + copyInt_(eg_B,0); + copyInt_(eg_C,0); + copyInt_(eg_D,1); + for (;;) { + while(!(eg_u[0]&1)) { //while u is even + halve_(eg_u); + if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2 + halve_(eg_A); + halve_(eg_B); + } else { + add_(eg_A,y); halve_(eg_A); + sub_(eg_B,x); halve_(eg_B); + } + } + + while (!(v[0]&1)) { //while v is even + halve_(v); + if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2 + halve_(eg_C); + halve_(eg_D); + } else { + add_(eg_C,y); halve_(eg_C); + sub_(eg_D,x); halve_(eg_D); + } + } + + if (!greater(v,eg_u)) { //v<=u + sub_(eg_u,v); + sub_(eg_A,eg_C); + sub_(eg_B,eg_D); + } else { //v>u + sub_(v,eg_u); + sub_(eg_C,eg_A); + sub_(eg_D,eg_B); + } + if (equalsInt(eg_u,0)) { + if (negative(eg_C)) { //make sure a (C)is nonnegative + add_(eg_C,y); + sub_(eg_D,x); + } + multInt_(eg_D,-1); ///make sure b (D) is nonnegative + copy_(a,eg_C); + copy_(b,eg_D); + leftShift_(v,g); + return; + } + } +} + + +//is bigInt x negative? +function negative(x) { + return ((x[x.length-1]>>(bpe-1))&1); +} + + +//is (x << (shift*bpe)) > y? +//x and y are nonnegative bigInts +//shift is a nonnegative integer +function greaterShift(x,y,shift) { + var kx=x.length, ky=y.length; + k=((kx+shift)<ky) ? (kx+shift) : ky; + for (i=ky-1-shift; i<kx && i>=0; i++) + if (x[i]>0) + return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger + for (i=kx-1+shift; i<ky; i++) + if (y[i]>0) + return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger + for (i=k-1; i>=shift; i--) + if (x[i-shift]>y[i]) return 1; + else if (x[i-shift]<y[i]) return 0; + return 0; +} + +//is x > y? (x and y both nonnegative) +function greater(x,y) { + var i; + var k=(x.length<y.length) ? x.length : y.length; + + for (i=x.length;i<y.length;i++) + if (y[i]) + return 0; //y has more digits + + for (i=y.length;i<x.length;i++) + if (x[i]) + return 1; //x has more digits + + for (i=k-1;i>=0;i--) + if (x[i]>y[i]) + return 1; + else if (x[i]<y[i]) + return 0; + return 0; +} + +//divide_ x by y giving quotient q and remainder r. (q=floor(x/y), r=x mod y). All 4 are bigints. +//x must have at least one leading zero element. +//y must be nonzero. +//q and r must be arrays that are exactly the same length as x. +//the x array must have at least as many elements as y. +function divide_(x,y,q,r) { + var kx, ky; + var i,j,y1,y2,c,a,b; + copy_(r,x); + for (ky=y.length;y[ky-1]==0;ky--); //kx,ky is number of elements in x,y, not including leading zeros + for (kx=r.length;r[kx-1]==0 && kx>ky;kx--); + + //normalize: ensure the most significant element of y has its highest bit set + b=y[ky-1]; + for (a=0; b; a++) + b>>=1; + a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element + leftShift_(y,a); //multiply both by 1<<a now, then divide_ both by that at the end + leftShift_(r,a); + + copyInt_(q,0); // q=0 + while (!greaterShift(y,r,kx-ky)) { // while (leftShift_(y,kx-ky) <= r) { + subShift_(r,y,kx-ky); // r=r-leftShift_(y,kx-ky) + q[kx-ky]++; // q[kx-ky]++; + } // } + + for (i=kx-1; i>=ky; i--) { + if (r[i]==y[ky-1]) + q[i-ky]=mask; + else + q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]); + + //The following for(;;) loop is equivalent to the commented while loop, + //except that the uncommented version avoids overflow. + //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0 + // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2]) + // q[i-ky]--; + for (;;) { + y2=(ky>1 ? y[ky-2] : 0)*q[i-ky]; + c=y2>>bpe; + y2=y2 & mask; + y1=c+q[i-ky]*y[ky-1]; + c=y1>>bpe; + y1=y1 & mask; + + if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]) + q[i-ky]--; + else + break; + } + + linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky) + if (negative(r)) { + addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky) + q[i-ky]--; + } + } + + rightShift_(y,a); //undo the normalization step + rightShift_(r,a); //undo the normalization step +} + +//do carries and borrows so each element of the bigInt x fits in bpe bits. +function carry_(x) { + var i,k,c,b; + k=x.length; + c=0; + for (i=0;i<k;i++) { + c+=x[i]; + b=0; + if (c<0) { + b=-(c>>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + } +} + +//return x mod n for bigInt x and integer n. +function modInt(x,n) { + var i,c=0; + for (i=x.length-1; i>=0; i--) + c=(c*radix+x[i])%n; + return c; +} + +//convert the integer t into a bigInt with at least the given number of bits. +//the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word) +//Pad the array with leading zeros so that it has at least minSize elements. +//There will always be at least one leading 0 element. +function int2bigInt(t,bits,minSize) { + var i,k; + k=Math.ceil(bits/bpe)+1; + k=minSize>k ? minSize : k; + buff=new Array(k); + copyInt_(buff,t); + return buff; +} + +//return the bigInt given a string representation in a given base. +//Pad the array with leading zeros so that it has at least minSize elements. +//If base=-1, then it reads in a space-separated list of array elements in decimal. +//The array will always have at least one leading zero, unless base=-1. +function str2bigInt(s,base,minSize) { + var d, i, j, x, y, kk; + var k=s.length; + if (base==-1) { //comma-separated list of array elements in decimal + x=new Array(0); + for (;;) { + y=new Array(x.length+1); + for (i=0;i<x.length;i++) + y[i+1]=x[i]; + y[0]=parseInt(s,10); + x=y; + d=s.indexOf(',',0); + if (d<1) + break; + s=s.substring(d+1); + if (s.length==0) + break; + } + if (x.length<minSize) { + y=new Array(minSize); + copy_(y,x); + return y; + } + return x; + } + + x=int2bigInt(0,base*k,0); + for (i=0;i<k;i++) { + d=digitsStr.indexOf(s.substring(i,i+1),0); + if (base<=36 && d>=36) //convert lowercase to uppercase if base<=36 + d-=26; + if (d<base && d>=0) { //ignore illegal characters + multInt_(x,base); + addInt_(x,d); + } + } + + for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros + k=minSize>k+1 ? minSize : k+1; + y=new Array(k); + kk=k<x.length ? k : x.length; + for (i=0;i<kk;i++) + y[i]=x[i]; + for (;i<k;i++) + y[i]=0; + return y; +} + +//is bigint x equal to integer y? +//y must have less than bpe bits +function equalsInt(x,y) { + var i; + if (x[0]!=y) + return 0; + for (i=1;i<x.length;i++) + if (x[i]) + return 0; + return 1; +} + +//are bigints x and y equal? +//this works even if x and y are different lengths and have arbitrarily many leading zeros +function equals(x,y) { + var i; + var k=x.length<y.length ? x.length : y.length; + for (i=0;i<k;i++) + if (x[i]!=y[i]) + return 0; + if (x.length>y.length) { + for (;i<x.length;i++) + if (x[i]) + return 0; + } else { + for (;i<y.length;i++) + if (y[i]) + return 0; + } + return 1; +} + +//is the bigInt x equal to zero? +function isZero(x) { + var i; + for (i=0;i<x.length;i++) + if (x[i]) + return 0; + return 1; +} + +//convert a bigInt into a string in a given base, from base 2 up to base 95. +//Base -1 prints the contents of the array representing the number. +function bigInt2str(x,base) { + var i,t,s=""; + + if (s6.length!=x.length) + s6=dup(x); + else + copy_(s6,x); + + if (base==-1) { //return the list of array contents + for (i=x.length-1;i>0;i--) + s+=x[i]+','; + s+=x[0]; + } + else { //return it in the given base + while (!isZero(s6)) { + t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base); + s=digitsStr.substring(t,t+1)+s; + } + } + if (s.length==0) + s="0"; + return s; +} + +//returns a duplicate of bigInt x +function dup(x) { + var i; + buff=new Array(x.length); + copy_(buff,x); + return buff; +} + +//do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y). +function copy_(x,y) { + var i; + var k=x.length<y.length ? x.length : y.length; + for (i=0;i<k;i++) + x[i]=y[i]; + for (i=k;i<x.length;i++) + x[i]=0; +} + +//do x=y on bigInt x and integer y. +function copyInt_(x,n) { + var i,c; + for (c=n,i=0;i<x.length;i++) { + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x+n where x is a bigInt and n is an integer. +//x must be large enough to hold the result. +function addInt_(x,n) { + var i,k,c,b; + x[0]+=n; + k=x.length; + c=0; + for (i=0;i<k;i++) { + c+=x[i]; + b=0; + if (c<0) { + b=-(c>>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + if (!c) return; //stop carrying as soon as the carry_ is zero + } +} + +//right shift bigInt x by n bits. 0 <= n < bpe. +function rightShift_(x,n) { + var i; + var k=Math.floor(n/bpe); + if (k) { + for (i=0;i<x.length-k;i++) //right shift x by k elements + x[i]=x[i+k]; + for (;i<x.length;i++) + x[i]=0; + n%=bpe; + } + for (i=0;i<x.length-1;i++) { + x[i]=mask & ((x[i+1]<<(bpe-n)) | (x[i]>>n)); + } + x[i]>>=n; +} + +//do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement +function halve_(x) { + var i; + for (i=0;i<x.length-1;i++) { + x[i]=mask & ((x[i+1]<<(bpe-1)) | (x[i]>>1)); + } + x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same +} + +//left shift bigInt x by n bits. +function leftShift_(x,n) { + var i; + var k=Math.floor(n/bpe); + if (k) { + for (i=x.length; i>=k; i--) //left shift x by k elements + x[i]=x[i-k]; + for (;i>=0;i--) + x[i]=0; + n%=bpe; + } + if (!n) + return; + for (i=x.length-1;i>0;i--) { + x[i]=mask & ((x[i]<<n) | (x[i-1]>>(bpe-n))); + } + x[i]=mask & (x[i]<<n); +} + +//do x=x*n where x is a bigInt and n is an integer. +//x must be large enough to hold the result. +function multInt_(x,n) { + var i,k,c,b; + if (!n) + return; + k=x.length; + c=0; + for (i=0;i<k;i++) { + c+=x[i]*n; + b=0; + if (c<0) { + b=-(c>>bpe); + c+=b*radix; + } + x[i]=c & mask; + c=(c>>bpe)-b; + } +} + +//do x=floor(x/n) for bigInt x and integer n, and return the remainder +function divInt_(x,n) { + var i,r=0,s; + for (i=x.length-1;i>=0;i--) { + s=r*radix+x[i]; + x[i]=Math.floor(s/n); + r=s%n; + } + return r; +} + +//do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b. +//x must be large enough to hold the answer. +function linComb_(x,y,a,b) { + var i,c,k,kk; + k=x.length<y.length ? x.length : y.length; + kk=x.length; + for (c=0,i=0;i<k;i++) { + c+=a*x[i]+b*y[i]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;i<kk;i++) { + c+=a*x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys. +//x must be large enough to hold the answer. +function linCombShift_(x,y,b,ys) { + var i,c,k,kk; + k=x.length<ys+y.length ? x.length : ys+y.length; + kk=x.length; + for (c=0,i=ys;i<k;i++) { + c+=x[i]+b*y[i-ys]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;c && i<kk;i++) { + c+=x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. +//x must be large enough to hold the answer. +function addShift_(x,y,ys) { + var i,c,k,kk; + k=x.length<ys+y.length ? x.length : ys+y.length; + kk=x.length; + for (c=0,i=ys;i<k;i++) { + c+=x[i]+y[i-ys]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;c && i<kk;i++) { + c+=x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. +//x must be large enough to hold the answer. +function subShift_(x,y,ys) { + var i,c,k,kk; + k=x.length<ys+y.length ? x.length : ys+y.length; + kk=x.length; + for (c=0,i=ys;i<k;i++) { + c+=x[i]-y[i-ys]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;c && i<kk;i++) { + c+=x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x-y for bigInts x and y. +//x must be large enough to hold the answer. +//negative answers will be 2s complement +function sub_(x,y) { + var i,c,k,kk; + k=x.length<y.length ? x.length : y.length; + for (c=0,i=0;i<k;i++) { + c+=x[i]-y[i]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;c && i<x.length;i++) { + c+=x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x+y for bigInts x and y. +//x must be large enough to hold the answer. +function add_(x,y) { + var i,c,k,kk; + k=x.length<y.length ? x.length : y.length; + for (c=0,i=0;i<k;i++) { + c+=x[i]+y[i]; + x[i]=c & mask; + c>>=bpe; + } + for (i=k;c && i<x.length;i++) { + c+=x[i]; + x[i]=c & mask; + c>>=bpe; + } +} + +//do x=x*y for bigInts x and y. This is faster when y<x. +function mult_(x,y) { + var i; + if (ss.length!=2*x.length) + ss=new Array(2*x.length); + copyInt_(ss,0); + for (i=0;i<y.length;i++) + if (y[i]) + linCombShift_(ss,x,y[i],i); //ss=1*ss+y[i]*(x<<(i*bpe)) + copy_(x,ss); +} + +//do x=x mod n for bigInts x and n. +function mod_(x,n) { + if (s4.length!=x.length) + s4=dup(x); + else + copy_(s4,x); + if (s5.length!=x.length) + s5=dup(x); + divide_(s4,n,s5,x); //x = remainder of s4 / n +} + +//do x=x*y mod n for bigInts x,y,n. +//for greater speed, let y<x. +function multMod_(x,y,n) { + var i; + if (s0.length!=2*x.length) + s0=new Array(2*x.length); + copyInt_(s0,0); + for (i=0;i<y.length;i++) + if (y[i]) + linCombShift_(s0,x,y[i],i); //s0=1*s0+y[i]*(x<<(i*bpe)) + mod_(s0,n); + copy_(x,s0); +} + +//do x=x*x mod n for bigInts x,n. +function squareMod_(x,n) { + var i,j,d,c,kx,kn,k; + for (kx=x.length; kx>0 && !x[kx-1]; kx--); //ignore leading zeros in x + k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n + if (s0.length!=k) + s0=new Array(k); + copyInt_(s0,0); + for (i=0;i<kx;i++) { + c=s0[2*i]+x[i]*x[i]; + s0[2*i]=c & mask; + c>>=bpe; + for (j=i+1;j<kx;j++) { + c=s0[i+j]+2*x[i]*x[j]+c; + s0[i+j]=(c & mask); + c>>=bpe; + } + s0[i+kx]=c; + } + mod_(s0,n); + copy_(x,s0); +} + +//return x with exactly k leading zero elements +function trim(x,k) { + var i,y; + for (i=x.length; i>0 && !x[i-1]; i--); + y=new Array(i+k); + copy_(y,x); + return y; +} + +//do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1. +//this is faster when n is odd. x usually needs to have as many elements as n. +function powMod_(x,y,n) { + var k1,k2,kn,np; + if(s7.length!=n.length) + s7=dup(n); + + //for even modulus, use a simple square-and-multiply algorithm, + //rather than using the more complex Montgomery algorithm. + if ((n[0]&1)==0) { + copy_(s7,x); + copyInt_(x,1); + while(!equalsInt(y,0)) { + if (y[0]&1) + multMod_(x,s7,n); + divInt_(y,2); + squareMod_(s7,n); + } + return; + } + + //calculate np from n for the Montgomery multiplications + copyInt_(s7,0); + for (kn=n.length;kn>0 && !n[kn-1];kn--); + np=radix-inverseModInt_(modInt(n,radix),radix); + s7[kn]=1; + multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n + + if (s3.length!=x.length) + s3=dup(x); + else + copy_(s3,x); + + for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y + if (y[k1]==0) { //anything to the 0th power is 1 + copyInt_(x,1); + return; + } + for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1] + for (;;) { + if (!(k2>>=1)) { //look at next bit of y + k1--; + if (k1<0) { + mont_(x,one,n,np); + return; + } + k2=1<<(bpe-1); + } + mont_(x,x,n,np); + + if (k2 & y[k1]) //if next bit is a 1 + mont_(x,s3,n,np); + } +} + +//do x=x*y*Ri mod n for bigInts x,y,n, +// where Ri = 2**(-kn*bpe) mod n, and kn is the +// number of elements in the n array, not +// counting leading zeros. +//x must be large enough to hold the answer. +//It's OK if x and y are the same variable. +//must have: +// x,y < n +// n is odd +// np = -(n^(-1)) mod radix +function mont_(x,y,n,np) { + var i,j,c,ui,t; + var kn=n.length; + var ky=y.length; + + if (sa.length!=kn) + sa=new Array(kn); + + for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n + //this function sometimes gives wrong answers when the next line is uncommented + //for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y + + copyInt_(sa,0); + + //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large keys + for (i=0; i<kn; i++) { + t=sa[0]+x[i]*y[0]; + ui=((t & mask) * np) & mask; //the inner "& mask" is needed on Macintosh MSIE, but not windows MSIE + c=(t+ui*n[0]) >> bpe; + t=x[i]; + + //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe + for (j=1;j<ky;j++) { + c+=sa[j]+t*y[j]+ui*n[j]; + sa[j-1]=c & mask; + c>>=bpe; + } + for (;j<kn;j++) { + c+=sa[j]+ui*n[j]; + sa[j-1]=c & mask; + c>>=bpe; + } + sa[j-1]=c & mask; + } + + if (!greater(n,sa)) + sub_(sa,n); + copy_(x,sa); +} + + + + +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# +//############################################################################# + + + + + +//############################################################################# + +Clipperz.Crypto.BigInt = function (aValue, aBase) { + var base; + var value; + + if (typeof(aValue) == 'object') { + this._internalValue = aValue; + } else { + if (typeof(aValue) == 'undefined') { + value = "0"; + } else { + value = aValue + ""; + } + + if (typeof(aBase) == 'undefined') { + base = 10; + } else { + base = aBase; + } + + this._internalValue = str2bigInt(value, base, 1, 1); + } + + return this; +} + +//============================================================================= + +MochiKit.Base.update(Clipperz.Crypto.BigInt.prototype, { + + //------------------------------------------------------------------------- + + 'internalValue': function () { + return this._internalValue; + }, + + //------------------------------------------------------------------------- + + 'isBigInt': true, + + //------------------------------------------------------------------------- + + 'toString': function(aBase) { + return this.asString(aBase); + }, + + //------------------------------------------------------------------------- + + 'asString': function (aBase) { + var base; + + if (typeof(aBase) == 'undefined') { + base = 10; + } else { + base = aBase; + } + + return bigInt2str(this.internalValue(), base).toLowerCase(); + }, + + //------------------------------------------------------------------------- + + 'equals': function (aValue) { + var result; + + if (aValue.isBigInt) { + result = equals(this.internalValue(), aValue.internalValue()); + } else if (typeof(aValue) == "number") { + result = equalsInt(this.internalValue(), aValue); + } else { + throw Clipperz.Crypt.BigInt.exception.UnknownType; + } + + return result; + }, + + //------------------------------------------------------------------------- + + 'add': function (aValue) { + var result; + + if (aValue.isBigInt) { + result = add(this.internalValue(), aValue.internalValue()); + } else { + result = addInt(this.internalValue(), aValue); + } + + return new Clipperz.Crypto.BigInt(result); + }, + + //------------------------------------------------------------------------- + + 'subtract': function (aValue) { + var result; + var value; + + if (aValue.isBigInt) { + value = aValue; + } else { + value = new Clipperz.Crypto.BigInt(aValue); + } + + result = sub(this.internalValue(), value.internalValue()); + + return new Clipperz.Crypto.BigInt(result); + }, + + //------------------------------------------------------------------------- + + 'multiply': function (aValue, aModule) { + var result; + var value; + + if (aValue.isBigInt) { + value = aValue; + } else { + value = new Clipperz.Crypto.BigInt(aValue); + } + + if (typeof(aModule) == 'undefined') { + result = mult(this.internalValue(), value.internalValue()); + } else { + result = multMod(this.internalValue(), value.internalValue(), aModule); + } + + return new Clipperz.Crypto.BigInt(result); + }, + + //------------------------------------------------------------------------- + + 'module': function (aModule) { + var result; + var module; + + if (aModule.isBigInt) { + module = aModule; + } else { + module = new Clipperz.Crypto.BigInt(aModule); + } + + result = mod(this.internalValue(), module.internalValue()); + + return new Clipperz.Crypto.BigInt(result); + }, + + //------------------------------------------------------------------------- + + 'powerModule': function(aValue, aModule) { + var result; + var value; + var module; + + if (aValue.isBigInt) { + value = aValue; + } else { + value = new Clipperz.Crypto.BigInt(aValue); + } + + if (aModule.isBigInt) { + module = aModule; + } else { + module = new Clipperz.Crypto.BigInt(aModule); + } + + if (aValue == -1) { + result = inverseMod(this.internalValue(), module.internalValue()); + } else { + result = powMod(this.internalValue(), value.internalValue(), module.internalValue()); + } + + return new Clipperz.Crypto.BigInt(result); + }, + + //------------------------------------------------------------------------- + + 'bitSize': function() { + return bitSize(this.internalValue()); + }, + + //------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" + +}); + +//############################################################################# + +Clipperz.Crypto.BigInt.randomPrime = function(aBitSize) { + return new Clipperz.Crypto.BigInt(randTruePrime(aBitSize)); +} + +//############################################################################# +//############################################################################# +//############################################################################# + +Clipperz.Crypto.BigInt.equals = function(a, b) { + return a.equals(b); +} + +Clipperz.Crypto.BigInt.add = function(a, b) { + return a.add(b); +} + +Clipperz.Crypto.BigInt.subtract = function(a, b) { + return a.subtract(b); +} + +Clipperz.Crypto.BigInt.multiply = function(a, b, module) { + return a.multiply(b, module); +} + +Clipperz.Crypto.BigInt.module = function(a, module) { + return a.module(module); +} + +Clipperz.Crypto.BigInt.powerModule = function(a, b, module) { + return a.powerModule(b, module); +} + +Clipperz.Crypto.BigInt.exception = { + UnknownType: new MochiKit.Base.NamedError("Clipperz.Crypto.BigInt.exception.UnknownType") +} diff --git a/frontend/beta/js/Clipperz/Crypto/ECC.js b/frontend/beta/js/Clipperz/Crypto/ECC.js new file mode 100644 index 0000000..c3dcec3 --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/ECC.js @@ -0,0 +1,960 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +/* +try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.ECC depends on Clipperz.ByteArray!"; +} + +if (typeof(Clipperz.Crypto.ECC) == 'undefined') { Clipperz.Crypto.ECC = {}; } + + +//############################################################################# + +Clipperz.Crypto.ECC.BinaryField = {}; + +//############################################################################# + +Clipperz.Crypto.ECC.BinaryField.AbstractValue = function(aValue, aBase) { + return this; +} + +Clipperz.Crypto.ECC.BinaryField.AbstractValue.prototype = MochiKit.Base.update(null, { + + 'asString': function(aBase) { + throw Clipperz.Base.exception.AbstractMethod; + }, + + 'isZero': function() { + throw Clipperz.Base.exception.AbstractMethod; + }, + + 'shiftLeft': function(aNumberOfBitsToShift) { + throw Clipperz.Base.exception.AbstractMethod; + }, + + 'bitSize': function() { + throw Clipperz.Base.exception.AbstractMethod; + }, + + 'isBitSet': function(aBitPosition) { + throw Clipperz.Base.exception.AbstractMethod; + }, + + 'xor': function(aValue) { + throw Clipperz.Base.exception.AbstractMethod; + }, + + 'compare': function(aValue) { + throw Clipperz.Base.exception.AbstractMethod; + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//***************************************************************************** +/ * +Clipperz.Crypto.ECC.BinaryField.BigIntValue = function(aValue, aBase) { + this._value = new Clipperz.Crypto.BigInt(aValue, aBase); + return this; +} + +Clipperz.Crypto.ECC.BinaryField.BigIntValue.prototype = MochiKit.Base.update(new Clipperz.Crypto.ECC.BinaryField.AbstractValue(), { + + 'value': function() { + return this._value; + }, + + //----------------------------------------------------------------------------- + + 'isZero': function() { + return (this.value().compare(Clipperz.Crypto.ECC.BinaryField.BigIntValue.O) == 0); + }, + + //----------------------------------------------------------------------------- + + 'asString': function(aBase) { + return this.value().asString(aBase); + }, + + //----------------------------------------------------------------------------- + + 'shiftLeft': function(aNumberOfBitsToShift) { + return new Clipperz.Crypto.ECC.BinaryField.BigIntValue(this.value().shiftLeft(aNumberOfBitsToShift)); + }, + + //----------------------------------------------------------------------------- + + 'bitSize': function() { + return this.value().bitSize(); + }, + + //----------------------------------------------------------------------------- + + 'isBitSet': function(aBitPosition) { + return this.value().isBitSet(aBitPosition); + }, + + //----------------------------------------------------------------------------- + + 'xor': function(aValue) { + return new Clipperz.Crypto.ECC.BinaryField.BigIntValue(this.value().xor(aValue.value())); + }, + + //----------------------------------------------------------------------------- + + 'compare': function(aValue) { + return this.value().compare(aValue.value()); + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +Clipperz.Crypto.ECC.BinaryField.BigIntValue.O = new Clipperz.Crypto.BigInt(0); +Clipperz.Crypto.ECC.BinaryField.BigIntValue.I = new Clipperz.Crypto.BigInt(1); +* / +//***************************************************************************** + +Clipperz.Crypto.ECC.BinaryField.WordArrayValue = function(aValue, aBase) { + if (aValue.constructor == String) { + var value; + var stringLength; + var numberOfWords; + var i,c; + + if (aBase != 16) { + throw Clipperz.Crypto.ECC.BinaryField.WordArrayValue.exception.UnsupportedBase; + } + + value = aValue.replace(/ /g, ''); + stringLength = value.length; + numberOfWords = Math.ceil(stringLength / 8); + this._value = new Array(numberOfWords); + + c = numberOfWords; + for (i=0; i<c; i++) { + var word; + + if (i < (c-1)) { + word = parseInt(value.substr(stringLength-((i+1)*8), 8), 16); + } else { + word = parseInt(value.substr(0, stringLength-(i*8)), 16); + } + + this._value[i] = word; + } + } else if (aValue.constructor == Array) { + var itemsToCopy; + + itemsToCopy = aValue.length; + while (aValue[itemsToCopy - 1] == 0) { + itemsToCopy --; + } + + this._value = aValue.slice(0, itemsToCopy); + } else if (aValue.constructor == Number) { + this._value = [aValue]; + } else { +// throw Clipperz.Crypto.ECC.BinaryField.WordArrayValue.exception.UnsupportedConstructorValueType; + } + + return this; +} + +Clipperz.Crypto.ECC.BinaryField.WordArrayValue.prototype = MochiKit.Base.update(new Clipperz.Crypto.ECC.BinaryField.AbstractValue(), { + + 'value': function() { + return this._value; + }, + + //----------------------------------------------------------------------------- + + 'wordSize': function() { + return this._value.length + }, + + //----------------------------------------------------------------------------- + + 'clone': function() { + return new Clipperz.Crypto.ECC.BinaryField.WordArrayValue(this._value.slice(0)); + }, + + //----------------------------------------------------------------------------- + + 'isZero': function() { + return (this.compare(Clipperz.Crypto.ECC.BinaryField.WordArrayValue.O) == 0); + }, + + //----------------------------------------------------------------------------- + + 'asString': function(aBase) { + var result; + var i,c; + + if (aBase != 16) { + throw Clipperz.Crypto.ECC.BinaryField.WordArrayValue.exception.UnsupportedBase; + } + + result = ""; + c = this.wordSize(); + for (i=0; i<c; i++) { + var wordAsString; + +// wordAsString = ("00000000" + this.value()[i].toString(16)); + wordAsString = ("00000000" + this._value[i].toString(16)); + wordAsString = wordAsString.substring(wordAsString.length - 8); + result = wordAsString + result; + } + + result = result.replace(/^(00)* SPACEs THAT SHOULD BE REMOVED TO FIX THIS REGEX /, ""); + + if (result == "") { + result = "0"; + } + + return result; + }, + + //----------------------------------------------------------------------------- + + 'shiftLeft': function(aNumberOfBitsToShift) { + return new Clipperz.Crypto.ECC.BinaryField.WordArrayValue(Clipperz.Crypto.ECC.BinaryField.WordArrayValue.shiftLeft(this._value, aNumberOfBitsToShift)); + }, + + //----------------------------------------------------------------------------- + + 'bitSize': function() { + return Clipperz.Crypto.ECC.BinaryField.WordArrayValue.bitSize(this._value); + }, + + //----------------------------------------------------------------------------- + + 'isBitSet': function(aBitPosition) { + return Clipperz.Crypto.ECC.BinaryField.WordArrayValue.isBitSet(this._value, aBitPosition); + }, + + //----------------------------------------------------------------------------- + + 'xor': function(aValue) { + return new Clipperz.Crypto.ECC.BinaryField.WordArrayValue(Clipperz.Crypto.ECC.BinaryField.WordArrayValue.xor(this._value, aValue._value)); + }, + + //----------------------------------------------------------------------------- + + 'compare': function(aValue) { + return Clipperz.Crypto.ECC.BinaryField.WordArrayValue.compare(this._value, aValue._value); + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +Clipperz.Crypto.ECC.BinaryField.WordArrayValue.O = new Clipperz.Crypto.ECC.BinaryField.WordArrayValue('0', 16); +Clipperz.Crypto.ECC.BinaryField.WordArrayValue.I = new Clipperz.Crypto.ECC.BinaryField.WordArrayValue('1', 16); + +Clipperz.Crypto.ECC.BinaryField.WordArrayValue.xor = function(a, b) { + var result; + var resultSize; + var i,c; + + resultSize = Math.max(a.length, b.length); + + result = new Array(resultSize); + c = resultSize; + for (i=0; i<c; i++) { +// resultValue[i] = (((this.value()[i] || 0) ^ (aValue.value()[i] || 0)) >>> 0); + result[i] = (((a[i] || 0) ^ (b[i] || 0)) >>> 0); + } + + return result; +}; + +Clipperz.Crypto.ECC.BinaryField.WordArrayValue.shiftLeft = function(aWordArray, aNumberOfBitsToShift) { + var numberOfWordsToShift; + var numberOfBitsToShift; + var result; + var overflowValue; + var i,c; + + numberOfWordsToShift = Math.floor(aNumberOfBitsToShift / 32); + numberOfBitsToShift = aNumberOfBitsToShift % 32; + + result = new Array(aWordArray.length + numberOfWordsToShift); + + c = numberOfWordsToShift; + for (i=0; i<c; i++) { + result[i] = 0; + } + + overflowValue = 0; + nextOverflowValue = 0; + + c = aWordArray.length; + for (i=0; i<c; i++) { + var value; + var resultWord; + +// value = this.value()[i]; + value = aWordArray[i]; + + if (numberOfBitsToShift > 0) { + var nextOverflowValue; + + nextOverflowValue = (value >>> (32 - numberOfBitsToShift)); + value = value & (0xffffffff >>> numberOfBitsToShift); + resultWord = (((value << numberOfBitsToShift) | overflowValue) >>> 0); + } else { + resultWord = value; + } + + result[i+numberOfWordsToShift] = resultWord; + overflowValue = nextOverflowValue; + } + + if (overflowValue != 0) { + result[aWordArray.length + numberOfWordsToShift] = overflowValue; + } + + return result; +}; + +Clipperz.Crypto.ECC.BinaryField.WordArrayValue.bitSize = function(aWordArray) { + var result; + var notNullElements; + var mostValuableWord; + var matchingBitsInMostImportantWord; + var mask; + var i,c; + + notNullElements = aWordArray.length; + + if ((aWordArray.length == 1) && (aWordArray[0] == 0)) { + result = 0; + } else { + while((aWordArray[notNullElements - 1] == 0) && (notNullElements > 0)) { + notNullElements --; + } + + result = (notNullElements - 1) * 32; + mostValuableWord = aWordArray[notNullElements - 1]; + + matchingBits = 32; + mask = 0x80000000; + + while ((matchingBits > 0) && ((mostValuableWord & mask) == 0)) { + matchingBits --; + mask >>>= 1; + } + + result += matchingBits; + } + + return result; +}; + +Clipperz.Crypto.ECC.BinaryField.WordArrayValue.isBitSet = function(aWordArray, aBitPosition) { + var result; + var byteIndex; + var bitIndexInSelectedByte; + + byteIndex = Math.floor(aBitPosition / 32); + bitIndexInSelectedByte = aBitPosition % 32; + + if (byteIndex <= aWordArray.length) { + result = ((aWordArray[byteIndex] & (1 << bitIndexInSelectedByte)) != 0); + } else { + result = false; + } + + return result; +}; + +Clipperz.Crypto.ECC.BinaryField.WordArrayValue.compare = function(a,b) { + var result; + var i,c; + + result = MochiKit.Base.compare(a.length, b.length); + + c = a.length; + for (i=0; (i<c) && (result==0); i++) { +//console.log("compare[" + c + " - " + i + " - 1] " + this.value()[c-i-1] + ", " + aValue.value()[c-i-1]); +// result = MochiKit.Base.compare(this.value()[c-i-1], aValue.value()[c-i-1]); + result = MochiKit.Base.compare(a[c-i-1], b[c-i-1]); + } + + return result; +}; + + +Clipperz.Crypto.ECC.BinaryField.WordArrayValue['exception']= { + 'UnsupportedBase': new MochiKit.Base.NamedError("Clipperz.Crypto.ECC.BinaryField.WordArrayValue.exception.UnsupportedBase"), + 'UnsupportedConstructorValueType': new MochiKit.Base.NamedError("Clipperz.Crypto.ECC.BinaryField.WordArrayValue.exception.UnsupportedConstructorValueType") +}; + +//***************************************************************************** + +//Clipperz.Crypto.ECC.BinaryField.Value = Clipperz.Crypto.ECC.BinaryField.BigIntValue; +Clipperz.Crypto.ECC.BinaryField.Value = Clipperz.Crypto.ECC.BinaryField.WordArrayValue; + +//############################################################################# + +Clipperz.Crypto.ECC.BinaryField.Point = function(args) { + args = args || {}; + this._x = args.x; + this._y = args.y; + + return this; +} + +Clipperz.Crypto.ECC.BinaryField.Point.prototype = MochiKit.Base.update(null, { + + 'asString': function() { + return "Clipperz.Crypto.ECC.BinaryField.Point (" + this.x() + ", " + this.y() + ")"; + }, + + //----------------------------------------------------------------------------- + + 'x': function() { + return this._x; + }, + + 'y': function() { + return this._y; + }, + + //----------------------------------------------------------------------------- + + 'isZero': function() { + return (this.x().isZero() && this.y().isZero()) + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + +Clipperz.Crypto.ECC.BinaryField.FiniteField = function(args) { + args = args || {}; + this._modulus = args.modulus; + + return this; +} + +Clipperz.Crypto.ECC.BinaryField.FiniteField.prototype = MochiKit.Base.update(null, { + + 'asString': function() { + return "Clipperz.Crypto.ECC.BinaryField.FiniteField (" + this.modulus().asString() + ")"; + }, + + //----------------------------------------------------------------------------- + + 'modulus': function() { + return this._modulus; + }, + + //----------------------------------------------------------------------------- + + '_module': function(aValue) { + var result; + var modulusComparison; +//console.log(">>> binaryField.finiteField.(standard)module"); + + modulusComparison = Clipperz.Crypto.ECC.BinaryField.WordArrayValue.compare(aValue, this.modulus()._value); + + if (modulusComparison < 0) { + result = aValue; + } else if (modulusComparison == 0) { + result = [0]; + } else { + var modulusBitSize; + var resultBitSize; + + result = aValue; + + modulusBitSize = this.modulus().bitSize(); + resultBitSize = Clipperz.Crypto.ECC.BinaryField.WordArrayValue.bitSize(result); + while (resultBitSize >= modulusBitSize) { + result = Clipperz.Crypto.ECC.BinaryField.WordArrayValue.xor(result, Clipperz.Crypto.ECC.BinaryField.WordArrayValue.shiftLeft(this.modulus()._value, resultBitSize - modulusBitSize)); + resultBitSize = Clipperz.Crypto.ECC.BinaryField.WordArrayValue.bitSize(result); + } + } +//console.log("<<< binaryField.finiteField.(standard)module"); + + return result; + }, + + 'module': function(aValue) { + return new Clipperz.Crypto.ECC.BinaryField.Value(this._module(aValue._value)); + }, + + //----------------------------------------------------------------------------- + + '_add': function(a, b) { + return Clipperz.Crypto.ECC.BinaryField.WordArrayValue.xor(a, b); + }, + + 'add': function(a, b) { + return new Clipperz.Crypto.ECC.BinaryField.Value(this._add(a._value, b._value)); + }, + + //----------------------------------------------------------------------------- + + 'negate': function(aValue) { + return aValue.clone(); + }, + + //----------------------------------------------------------------------------- +/ * + 'multiply': function(a, b) { + var result; + var valueToXor; + var i,c; + + result = Clipperz.Crypto.ECC.BinaryField.Value.O; + valueToXor = b; + c = a.bitSize(); + for (i=0; i<c; i++) { + if (a.isBitSet(i) === true) { + result = result.xor(valueToXor); + } + valueToXor = valueToXor.shiftLeft(1); + } + result = this.module(result); + + return result; + }, +* / + + '_multiply': function(a, b) { + var result; + var valueToXor; + var i,c; + + result = [0]; + valueToXor = b; + c = Clipperz.Crypto.ECC.BinaryField.WordArrayValue.bitSize(a); + for (i=0; i<c; i++) { + if (Clipperz.Crypto.ECC.BinaryField.WordArrayValue.isBitSet(a, i) === true) { + result = Clipperz.Crypto.ECC.BinaryField.WordArrayValue.xor(result, valueToXor); + } + valueToXor = Clipperz.Crypto.ECC.BinaryField.WordArrayValue.shiftLeft(valueToXor, 1); + } + result = this._module(result); + + return result; + }, + + 'multiply': function(a, b) { + return new Clipperz.Crypto.ECC.BinaryField.Value(this._multiply(a._value, b._value)); + }, + + //----------------------------------------------------------------------------- + // + // Guide to Elliptic Curve Cryptography + // Darrel Hankerson, Alfred Menezes, Scott Vanstone + // - Pag: 49, Alorithm 2.34 + // + //----------------------------------------------------------------------------- +/ * + 'square': function(aValue) { + var result; + var t; + var i,c; + + result = [0]; + t = Math.max(a) + c = 32; + for (i=0; i<c; i++) { + var ii, cc; + + cc = + } + + + + + return result; + }, +* / + //----------------------------------------------------------------------------- + + 'inverse': function(aValue) { + var result; + var b, c; + var u, v; + + b = Clipperz.Crypto.ECC.BinaryField.Value.I; + c = Clipperz.Crypto.ECC.BinaryField.Value.O; + u = this.module(aValue); + v = this.modulus(); + + while (u.bitSize() > 1) { + var bitDifferenceSize; + + bitDifferenceSize = u.bitSize() - v.bitSize(); + if (bitDifferenceSize < 0) { + var swap; + + swap = u; + u = v; + v = swap; + + swap = c; + c = b; + b = swap; + + bitDifferenceSize = -bitDifferenceSize; + } + + u = this.add(u, v.shiftLeft(bitDifferenceSize)); + b = this.add(b, c.shiftLeft(bitDifferenceSize)) + } + + result = this.module(b); + + return result; + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + +Clipperz.Crypto.ECC.BinaryField.Curve = function(args) { + args = args || {}; + + this._modulus = args.modulus; + + this._a = args.a; + this._b = args.b; + this._G = args.G; + this._r = args.r; + this._h = args.h; + + this._finiteField = null; + + return this; +} + +Clipperz.Crypto.ECC.BinaryField.Curve.prototype = MochiKit.Base.update(null, { + + 'asString': function() { + return "Clipperz.Crypto.ECC.BinaryField.Curve"; + }, + + //----------------------------------------------------------------------------- + + 'modulus': function() { + return this._modulus; + }, + + 'a': function() { + return this._a; + }, + + 'b': function() { + return this._b; + }, + + 'G': function() { + return this._G; + }, + + 'r': function() { + return this._r; + }, + + 'h': function() { + return this._h; + }, + + //----------------------------------------------------------------------------- + + 'finiteField': function() { + if (this._finiteField == null) { + this._finiteField = new Clipperz.Crypto.ECC.BinaryField.FiniteField({modulus:this.modulus()}) + } + + return this._finiteField; + }, + + //----------------------------------------------------------------------------- + + 'negate': function(aPointA) { + var result; + + result = new Clipperz.Crypto.ECC.Point({x:aPointA.x(), y:this.finiteField().add(aPointA.y(), aPointA.x())}) + + return result; + }, + + //----------------------------------------------------------------------------- + + 'add': function(aPointA, aPointB) { + var result; + +//console.log(">>> ECC.BinaryField.Curve.add"); + if (aPointA.isZero()) { +//console.log("--- pointA == zero"); + result = aPointB; + } else if (aPointB.isZero()) { +//console.log("--- pointB == zero"); + result = aPointA; + } else if ( (aPointA.x().compare(aPointB.x()) == 0) && + ((aPointA.y().compare(aPointB.y()) != 0) || aPointB.x().isZero())) + { +//console.log("compare A.x - B.x: ", aPointA.x().compare(aPointB.x())); +//console.log("compare A.y - B.y: ", (aPointA.y().compare(aPointB.y()) != 0)); +//console.log("compare B.x.isZero(): ", aPointB.x().isZero()); + +//console.log("--- result = zero"); + result = new Clipperz.Crypto.ECC.BinaryField.Point({x:Clipperz.Crypto.ECC.BinaryField.Value.O, y:Clipperz.Crypto.ECC.BinaryField.Value.O}); + } else { +//console.log("--- result = ELSE"); + var f2m; + var x, y; + var lambda; + + f2m = this.finiteField(); + + if (aPointA.x().compare(aPointB.x()) != 0) { +//console.log(" a.x != b.x"); + lambda = f2m.multiply( + f2m.add(aPointA.y(), aPointB.y()), + f2m.inverse(f2m.add(aPointA.x(), aPointB.x())) + ); + x = f2m.add(this.a(), f2m.multiply(lambda, lambda)); + x = f2m.add(x, lambda); + x = f2m.add(x, aPointA.x()); + x = f2m.add(x, aPointB.x()); + } else { +//console.log(" a.x == b.x"); + lambda = f2m.add(aPointB.x(), f2m.multiply(aPointB.y(), f2m.inverse(aPointB.x()))); +//console.log(" lambda: " + lambda.asString(16)); + x = f2m.add(this.a(), f2m.multiply(lambda, lambda)); +//console.log(" x (step 1): " + x.asString(16)); + x = f2m.add(x, lambda); +//console.log(" x (step 2): " + x.asString(16)); + } + + y = f2m.multiply(f2m.add(aPointB.x(), x), lambda); +//console.log(" y (step 1): " + y.asString(16)); + y = f2m.add(y, x); +//console.log(" y (step 2): " + y.asString(16)); + y = f2m.add(y, aPointB.y()); +//console.log(" y (step 3): " + y.asString(16)); + + result = new Clipperz.Crypto.ECC.BinaryField.Point({x:x, y:y}) + } +//console.log("<<< ECC.BinaryField.Curve.add"); + + return result; + }, + + //----------------------------------------------------------------------------- + + 'multiply': function(aValue, aPoint) { + var result; + +console.profile(); + result = new Clipperz.Crypto.ECC.BinaryField.Point({x:Clipperz.Crypto.ECC.BinaryField.Value.O, y:Clipperz.Crypto.ECC.BinaryField.Value.O}); + + if (aValue.isZero() == false) { + var k, Q; + var i; + var countIndex; countIndex = 0; + + if (aValue.compare(Clipperz.Crypto.ECC.BinaryField.WordArrayValue.O) > 0) { + k = aValue; + Q = aPoint; + } else { +MochiKit.Logging.logError("The Clipperz.Crypto.ECC.BinaryFields.Value does not work with negative values!!!!"); + k = aValue.negate(); + Q = this.negate(aPoint); + } + +//console.log("k: " + k.toString(16)); +//console.log("k.bitSize: " + k.bitSize()); + for (i=k.bitSize()-1; i>=0; i--) { + result = this.add(result, result); + if (k.isBitSet(i)) { + result = this.add(result, Q); + } + +// if (countIndex==100) {console.log("multiply.break"); break;} else countIndex++; + } + } +console.profileEnd(); + + return result; + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + +//############################################################################# +/ * +Clipperz.Crypto.ECC.Key = function(args) { + args = args || {}; + + return this; +} + +Clipperz.Crypto.ECC.Key.prototype = MochiKit.Base.update(null, { + + 'asString': function() { + return "Clipperz.Crypto.ECC.Key"; + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); +* / +//############################################################################# + + +//############################################################################# + +Clipperz.Crypto.ECC.StandardCurves = {}; + +MochiKit.Base.update(Clipperz.Crypto.ECC.StandardCurves, { +/ * + '_K571': null, + 'K571': function() { + if (Clipperz.Crypto.ECC.StandardCurves._K571 == null) { + Clipperz.Crypto.ECC.StandardCurves._K571 = new Clipperz.Crypto.ECC.Curve.Koblitz({ + exadecimalForm: '80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425', + a: new Clipperz.Crypto.BigInt(0), + G: new Clipperz.Crypto.ECC.Point({ + x: new Clipperz.Crypto.BigInt('26eb7a859923fbc82189631f8103fe4ac9ca2970012d5d46024804801841ca44370958493b205e647da304db4ceb08cbbd1ba39494776fb988b47174dca88c7e2945283a01c8972', 16), + y: new Clipperz.Crypto.BigInt('349dc807f4fbf374f4aeade3bca95314dd58cec9f307a54ffc61efc006d8a2c9d4979c0ac44aea74fbebbb9f772aedcb620b01a7ba7af1b320430c8591984f601cd4c143ef1c7a3', 16) + }), + n: new Clipperz.Crypto.BigInt('1932268761508629172347675945465993672149463664853217499328617625725759571144780212268133978522706711834706712800825351461273674974066617311929682421617092503555733685276673', 16), + h: new Clipperz.Crypto.BigInt(4) + }); + } + + return Clipperz.Crypto.ECC.StandardCurves._K571; + }, +* / + //----------------------------------------------------------------------------- + + '_B571': null, + 'B571': function() { // f(z) = z^571 + z^10 + z^5 + z^2 + 1 + if (Clipperz.Crypto.ECC.StandardCurves._B571 == null) { + Clipperz.Crypto.ECC.StandardCurves._B571 = new Clipperz.Crypto.ECC.BinaryField.Curve({ + modulus: new Clipperz.Crypto.ECC.BinaryField.Value('80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425', 16), + a: new Clipperz.Crypto.ECC.BinaryField.Value('1', 16), + b: new Clipperz.Crypto.ECC.BinaryField.Value('02f40e7e2221f295de297117b7f3d62f5c6a97ffcb8ceff1cd6ba8ce4a9a18ad84ffabbd8efa59332be7ad6756a66e294afd185a78ff12aa520e4de739baca0c7ffeff7f2955727a', 16), + G: new Clipperz.Crypto.ECC.BinaryField.Point({ + x: new Clipperz.Crypto.ECC.BinaryField.Value('0303001d34b856296c16c0d40d3cd7750a93d1d2955fa80aa5f40fc8db7b2abdbde53950f4c0d293cdd711a35b67fb1499ae60038614f1394abfa3b4c850d927e1e7769c8eec2d19', 16), + y: new Clipperz.Crypto.ECC.BinaryField.Value('037bf27342da639b6dccfffeb73d69d78c6c27a6009cbbca1980f8533921e8a684423e43bab08a576291af8f461bb2a8b3531d2f0485c19b16e2f1516e23dd3c1a4827af1b8ac15b', 16) + }), +// r: new Clipperz.Crypto.ECC.BinaryField.Value('3864537523017258344695351890931987344298927329706434998657235251451519142289560424536143999389415773083133881121926944486246872462816813070234528288303332411393191105285703', 10), + r: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe661ce18ff55987308059b186823851ec7dd9ca1161de93d5174d66e8382e9bb2fe84e47', 16), + h: new Clipperz.Crypto.ECC.BinaryField.Value('2', 16) + +// S: new Clipperz.Crypto.ECC.BinaryField.Value('2aa058f73a0e33ab486b0f610410c53a7f132310', 10), +// n: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe661ce18ff55987308059b186823851ec7dd9ca1161de93d5174d66e8382e9bb2fe84e47', 16), + }); + + //----------------------------------------------------------------------------- + // + // Guide to Elliptic Curve Cryptography + // Darrel Hankerson, Alfred Menezes, Scott Vanstone + // - Pag: 56, Alorithm 2.45 (with a typo!!!) + // + //----------------------------------------------------------------------------- + // + // http://www.milw0rm.com/papers/136 + // + // ------------------------------------------------------------------------- + // Polynomial Reduction Algorithm Modulo f571 + // ------------------------------------------------------------------------- + // + // Input: Polynomial p(x) of degree 1140 or less, stored as + // an array of 2T machinewords. + // Output: p(x) mod f571(x) + // + // FOR i = T-1, ..., 0 DO + // SET X := P[i+T] + // P[i] := P[i] ^ (X<<5) ^ (X<<7) ^ (X<<10) ^ (X<<15) + // P[i+1] := P[i+1] ^ (X>>17) ^ (X>>22) ^ (X>>25) ^ (X>>27) + // + // SET X := P[T-1] >> 27 + // P[0] := P[0] ^ X ^ (X<<2) ^ (X<<5) ^ (X<<10) + // P[T-1] := P[T-1] & 0x07ffffff + // + // RETURN P[T-1],...,P[0] + // + // ------------------------------------------------------------------------- + // + Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().module = function(aValue) { + var result; + var C, T; + var i; + +//console.log(">>> binaryField.finiteField.(improved)module"); +// C = aValue.value().slice(0); + C = aValue._value.slice(0); + for (i=35; i>=18; i--) { + T = C[i]; + C[i-18] = (((C[i-18] ^ (T<<5) ^ (T<<7) ^ (T<<10) ^ (T<<15)) & 0xffffffff) >>> 0); + C[i-17] = ((C[i-17] ^ (T>>>27) ^ (T>>>25) ^ (T>>>22) ^ (T>>>17)) >>> 0); + } + T = (C[17] >>> 27); + C[0] = ((C[0] ^ T ^ ((T<<2) ^ (T<<5) ^ (T<<10)) & 0xffffffff) >>> 0); + C[17] = (C[17] & 0x07ffffff); + + for(i=18; i<=35; i++) { + C[i] = 0; + } + + result = new Clipperz.Crypto.ECC.BinaryField.WordArrayValue(C); +//console.log("<<< binaryField.finiteField.(improved)module"); + + return result; + }; + } + + return Clipperz.Crypto.ECC.StandardCurves._B571; + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//############################################################################# +*/ diff --git a/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Curve.js b/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Curve.js new file mode 100644 index 0000000..042ca6c --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Curve.js @@ -0,0 +1,461 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.ECC depends on Clipperz.ByteArray!"; +} +if (typeof(Clipperz.Crypto.ECC) == 'undefined') { Clipperz.Crypto.ECC = {}; } +if (typeof(Clipperz.Crypto.ECC.BinaryField) == 'undefined') { Clipperz.Crypto.ECC.BinaryField = {}; } + +Clipperz.Crypto.ECC.BinaryField.Curve = function(args) { + args = args || {}; + + this._modulus = args.modulus; + + this._a = args.a; + this._b = args.b; + this._G = args.G; + this._r = args.r; + this._h = args.h; + + this._finiteField = null; + + return this; +} + +Clipperz.Crypto.ECC.BinaryField.Curve.prototype = MochiKit.Base.update(null, { + + 'asString': function() { + return "Clipperz.Crypto.ECC.BinaryField.Curve"; + }, + + //----------------------------------------------------------------------------- + + 'modulus': function() { + return this._modulus; + }, + + 'a': function() { + return this._a; + }, + + 'b': function() { + return this._b; + }, + + 'G': function() { + return this._G; + }, + + 'r': function() { + return this._r; + }, + + 'h': function() { + return this._h; + }, + + //----------------------------------------------------------------------------- + + 'finiteField': function() { + if (this._finiteField == null) { + this._finiteField = new Clipperz.Crypto.ECC.BinaryField.FiniteField({modulus:this.modulus()}) + } + + return this._finiteField; + }, + + //----------------------------------------------------------------------------- + + 'negate': function(aPointA) { + var result; + + result = new Clipperz.Crypto.ECC.Point({x:aPointA.x(), y:this.finiteField().add(aPointA.y(), aPointA.x())}) + + return result; + }, + + //----------------------------------------------------------------------------- + + 'add': function(aPointA, aPointB) { + var result; + +//console.log(">>> ECC.BinaryField.Curve.add"); + if (aPointA.isZero()) { +//console.log("--- pointA == zero"); + result = aPointB; + } else if (aPointB.isZero()) { +//console.log("--- pointB == zero"); + result = aPointA; + } else if ( (aPointA.x().compare(aPointB.x()) == 0) && ((aPointA.y().compare(aPointB.y()) != 0) || aPointB.x().isZero())) { +//console.log("compare A.x - B.x: ", aPointA.x().compare(aPointB.x())); +//console.log("compare A.y - B.y: ", (aPointA.y().compare(aPointB.y()) != 0)); +//console.log("compare B.x.isZero(): ", aPointB.x().isZero()); + +//console.log("--- result = zero"); + result = new Clipperz.Crypto.ECC.BinaryField.Point({x:Clipperz.Crypto.ECC.BinaryField.Value.O, y:Clipperz.Crypto.ECC.BinaryField.Value.O}); + } else { +//console.log("--- result = ELSE"); + var f2m; + var x, y; + var lambda; + var aX, aY, bX, bY; + + aX = aPointA.x()._value; + aY = aPointA.y()._value; + bX = aPointB.x()._value; + bY = aPointB.y()._value; + + f2m = this.finiteField(); + + if (aPointA.x().compare(aPointB.x()) != 0) { +//console.log(" a.x != b.x"); + lambda = f2m._fastMultiply( + f2m._add(aY, bY), + f2m._inverse(f2m._add(aX, bX)) + ); + x = f2m._add(this.a()._value, f2m._square(lambda)); + f2m._overwriteAdd(x, lambda); + f2m._overwriteAdd(x, aX); + f2m._overwriteAdd(x, bX); + } else { +//console.log(" a.x == b.x"); + lambda = f2m._add(bX, f2m._fastMultiply(bY, f2m._inverse(bX))); +//console.log(" lambda: " + lambda.asString(16)); + x = f2m._add(this.a()._value, f2m._square(lambda)); +//console.log(" x (step 1): " + x.asString(16)); + f2m._overwriteAdd(x, lambda); +//console.log(" x (step 2): " + x.asString(16)); + } + + y = f2m._fastMultiply(f2m._add(bX, x), lambda); +//console.log(" y (step 1): " + y.asString(16)); + f2m._overwriteAdd(y, x); +//console.log(" y (step 2): " + y.asString(16)); + f2m._overwriteAdd(y, bY); +//console.log(" y (step 3): " + y.asString(16)); + + result = new Clipperz.Crypto.ECC.BinaryField.Point({x:new Clipperz.Crypto.ECC.BinaryField.Value(x), y:new Clipperz.Crypto.ECC.BinaryField.Value(y)}) + } +//console.log("<<< ECC.BinaryField.Curve.add"); + + return result; + }, + + //----------------------------------------------------------------------------- + + 'overwriteAdd': function(aPointA, aPointB) { + if (aPointA.isZero()) { +// result = aPointB; + aPointA._x._value = aPointB._x._value; + aPointA._y._value = aPointB._y._value; + } else if (aPointB.isZero()) { +// result = aPointA; + } else if ( (aPointA.x().compare(aPointB.x()) == 0) && ((aPointA.y().compare(aPointB.y()) != 0) || aPointB.x().isZero())) { +// result = new Clipperz.Crypto.ECC.BinaryField.Point({x:Clipperz.Crypto.ECC.BinaryField.Value.O, y:Clipperz.Crypto.ECC.BinaryField.Value.O}); + aPointA._x = Clipperz.Crypto.ECC.BinaryField.Value.O; + aPointA._y = Clipperz.Crypto.ECC.BinaryField.Value.O; + } else { + var f2m; + var x, y; + var lambda; + var aX, aY, bX, bY; + + aX = aPointA.x()._value; + aY = aPointA.y()._value; + bX = aPointB.x()._value; + bY = aPointB.y()._value; + + f2m = this.finiteField(); + + if (aPointA.x().compare(aPointB.x()) != 0) { +//console.log(" a.x != b.x"); + lambda = f2m._fastMultiply( + f2m._add(aY, bY), + f2m._inverse(f2m._add(aX, bX)) + ); + x = f2m._add(this.a()._value, f2m._square(lambda)); + f2m._overwriteAdd(x, lambda); + f2m._overwriteAdd(x, aX); + f2m._overwriteAdd(x, bX); + } else { +//console.log(" a.x == b.x"); + lambda = f2m._add(bX, f2m._fastMultiply(bY, f2m._inverse(bX))); +//console.log(" lambda: " + lambda.asString(16)); + x = f2m._add(this.a()._value, f2m._square(lambda)); +//console.log(" x (step 1): " + x.asString(16)); + f2m._overwriteAdd(x, lambda); +//console.log(" x (step 2): " + x.asString(16)); + } + + y = f2m._fastMultiply(f2m._add(bX, x), lambda); +//console.log(" y (step 1): " + y.asString(16)); + f2m._overwriteAdd(y, x); +//console.log(" y (step 2): " + y.asString(16)); + f2m._overwriteAdd(y, bY); +//console.log(" y (step 3): " + y.asString(16)); + +// result = new Clipperz.Crypto.ECC.BinaryField.Point({x:new Clipperz.Crypto.ECC.BinaryField.Value(x), y:new Clipperz.Crypto.ECC.BinaryField.Value(y)}) + aPointA._x._value = x; + aPointA._y._value = y; + + } +//console.log("<<< ECC.BinaryField.Curve.add"); + + return result; + }, + + //----------------------------------------------------------------------------- + + 'multiply': function(aValue, aPoint) { + var result; + +//console.profile(); + result = new Clipperz.Crypto.ECC.BinaryField.Point({x:Clipperz.Crypto.ECC.BinaryField.Value.O, y:Clipperz.Crypto.ECC.BinaryField.Value.O}); + + if (aValue.isZero() == false) { + var k, Q; + var i; + var countIndex; countIndex = 0; + + if (aValue.compare(Clipperz.Crypto.ECC.BinaryField.Value.O) > 0) { + k = aValue; + Q = aPoint; + } else { +MochiKit.Logging.logError("The Clipperz.Crypto.ECC.BinaryFields.Value does not work with negative values!!!!"); + k = aValue.negate(); + Q = this.negate(aPoint); + } + +//console.log("k: " + k.toString(16)); +//console.log("k.bitSize: " + k.bitSize()); + for (i=k.bitSize()-1; i>=0; i--) { + result = this.add(result, result); +// this.overwriteAdd(result, result); + if (k.isBitSet(i)) { + result = this.add(result, Q); +// this.overwriteAdd(result, Q); + } + +// if (countIndex==100) {console.log("multiply.break"); break;} else countIndex++; + } + } +//console.profileEnd(); + + return result; + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + + +//############################################################################# + +Clipperz.Crypto.ECC.StandardCurves = {}; + +MochiKit.Base.update(Clipperz.Crypto.ECC.StandardCurves, { +/* + '_K571': null, + 'K571': function() { + if (Clipperz.Crypto.ECC.StandardCurves._K571 == null) { + Clipperz.Crypto.ECC.StandardCurves._K571 = new Clipperz.Crypto.ECC.Curve.Koblitz({ + exadecimalForm: '80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425', + a: new Clipperz.Crypto.BigInt(0), + G: new Clipperz.Crypto.ECC.Point({ + x: new Clipperz.Crypto.BigInt('26eb7a859923fbc82189631f8103fe4ac9ca2970012d5d46024804801841ca44370958493b205e647da304db4ceb08cbbd1ba39494776fb988b47174dca88c7e2945283a01c8972', 16), + y: new Clipperz.Crypto.BigInt('349dc807f4fbf374f4aeade3bca95314dd58cec9f307a54ffc61efc006d8a2c9d4979c0ac44aea74fbebbb9f772aedcb620b01a7ba7af1b320430c8591984f601cd4c143ef1c7a3', 16) + }), + n: new Clipperz.Crypto.BigInt('1932268761508629172347675945465993672149463664853217499328617625725759571144780212268133978522706711834706712800825351461273674974066617311929682421617092503555733685276673', 16), + h: new Clipperz.Crypto.BigInt(4) + }); + } + + return Clipperz.Crypto.ECC.StandardCurves._K571; + }, +*/ + //----------------------------------------------------------------------------- + + '_B571': null, + 'B571': function() { // f(z) = z^571 + z^10 + z^5 + z^2 + 1 + if (Clipperz.Crypto.ECC.StandardCurves._B571 == null) { + Clipperz.Crypto.ECC.StandardCurves._B571 = new Clipperz.Crypto.ECC.BinaryField.Curve({ + modulus: new Clipperz.Crypto.ECC.BinaryField.Value('80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425', 16), + a: new Clipperz.Crypto.ECC.BinaryField.Value('1', 16), + b: new Clipperz.Crypto.ECC.BinaryField.Value('02f40e7e2221f295de297117b7f3d62f5c6a97ffcb8ceff1cd6ba8ce4a9a18ad84ffabbd8efa59332be7ad6756a66e294afd185a78ff12aa520e4de739baca0c7ffeff7f2955727a', 16), + G: new Clipperz.Crypto.ECC.BinaryField.Point({ + x: new Clipperz.Crypto.ECC.BinaryField.Value('0303001d 34b85629 6c16c0d4 0d3cd775 0a93d1d2 955fa80a a5f40fc8 db7b2abd bde53950 f4c0d293 cdd711a3 5b67fb14 99ae6003 8614f139 4abfa3b4 c850d927 e1e7769c 8eec2d19', 16), + y: new Clipperz.Crypto.ECC.BinaryField.Value('037bf273 42da639b 6dccfffe b73d69d7 8c6c27a6 009cbbca 1980f853 3921e8a6 84423e43 bab08a57 6291af8f 461bb2a8 b3531d2f 0485c19b 16e2f151 6e23dd3c 1a4827af 1b8ac15b', 16) + }), + r: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff e661ce18 ff559873 08059b18 6823851e c7dd9ca1 161de93d 5174d66e 8382e9bb 2fe84e47', 16), + h: new Clipperz.Crypto.ECC.BinaryField.Value('2', 16) + +// S: new Clipperz.Crypto.ECC.BinaryField.Value('2aa058f73a0e33ab486b0f610410c53a7f132310', 10), +// n: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe661ce18ff55987308059b186823851ec7dd9ca1161de93d5174d66e8382e9bb2fe84e47', 16), + }); + + //----------------------------------------------------------------------------- + // + // Guide to Elliptic Curve Cryptography + // Darrel Hankerson, Alfred Menezes, Scott Vanstone + // - Pag: 56, Alorithm 2.45 (with a typo!!!) + // + //----------------------------------------------------------------------------- + // + // http://www.milw0rm.com/papers/136 + // + // ------------------------------------------------------------------------- + // Polynomial Reduction Algorithm Modulo f571 + // ------------------------------------------------------------------------- + // + // Input: Polynomial p(x) of degree 1140 or less, stored as + // an array of 2T machinewords. + // Output: p(x) mod f571(x) + // + // FOR i = T-1, ..., 0 DO + // SET X := P[i+T] + // P[i] := P[i] ^ (X<<5) ^ (X<<7) ^ (X<<10) ^ (X<<15) + // P[i+1] := P[i+1] ^ (X>>17) ^ (X>>22) ^ (X>>25) ^ (X>>27) + // + // SET X := P[T-1] >> 27 + // P[0] := P[0] ^ X ^ (X<<2) ^ (X<<5) ^ (X<<10) + // P[T-1] := P[T-1] & 0x07ffffff + // + // RETURN P[T-1],...,P[0] + // + // ------------------------------------------------------------------------- + // + Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().slowModule = Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().module; + Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().module = function(aValue) { + var result; + + if (aValue.bitSize() > 1140) { + MochiKit.Logging.logWarning("ECC.StandarCurves.B571.finiteField().module: falling back to default implementation"); + result = Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().slowModule(aValue); + } else { + var C, T; + var i; + +//console.log(">>> binaryField.finiteField.(improved)module"); +// C = aValue.value().slice(0); + C = aValue._value.slice(0); + for (i=35; i>=18; i--) { + T = C[i]; + C[i-18] = (((C[i-18] ^ (T<<5) ^ (T<<7) ^ (T<<10) ^ (T<<15)) & 0xffffffff) >>> 0); + C[i-17] = ((C[i-17] ^ (T>>>27) ^ (T>>>25) ^ (T>>>22) ^ (T>>>17)) >>> 0); + } + T = (C[17] >>> 27); + C[0] = ((C[0] ^ T ^ ((T<<2) ^ (T<<5) ^ (T<<10)) & 0xffffffff) >>> 0); + C[17] = (C[17] & 0x07ffffff); + + for(i=18; i<=35; i++) { + C[i] = 0; + } + + result = new Clipperz.Crypto.ECC.BinaryField.Value(C); +//console.log("<<< binaryField.finiteField.(improved)module"); + } + + return result; + }; + } + + return Clipperz.Crypto.ECC.StandardCurves._B571; + }, + + //----------------------------------------------------------------------------- + + '_B283': null, + 'B283': function() { // f(z) = z^283 + z^12 + z^7 + z^5 + 1 + if (Clipperz.Crypto.ECC.StandardCurves._B283 == null) { + Clipperz.Crypto.ECC.StandardCurves._B283 = new Clipperz.Crypto.ECC.BinaryField.Curve({ +// modulus: new Clipperz.Crypto.ECC.BinaryField.Value('10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000010a1', 16), + modulus: new Clipperz.Crypto.ECC.BinaryField.Value('08000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000010a1', 16), + a: new Clipperz.Crypto.ECC.BinaryField.Value('1', 16), + b: new Clipperz.Crypto.ECC.BinaryField.Value('027b680a c8b8596d a5a4af8a 19a0303f ca97fd76 45309fa2 a581485a f6263e31 3b79a2f5', 16), + G: new Clipperz.Crypto.ECC.BinaryField.Point({ + x: new Clipperz.Crypto.ECC.BinaryField.Value('05f93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8 557eac9c 80e2e198 f8cdbecd 86b12053', 16), + y: new Clipperz.Crypto.ECC.BinaryField.Value('03676854 fe24141c b98fe6d4 b20d02b4 516ff702 350eddb0 826779c8 13f0df45 be8112f4', 16) + }), + r: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffff ffffffff ffffffff ffffffff ffffef90 399660fc 938a9016 5b042a7c efadb307', 16), + h: new Clipperz.Crypto.ECC.BinaryField.Value('2', 16) + +// S: new Clipperz.Crypto.ECC.BinaryField.Value('2aa058f73a0e33ab486b0f610410c53a7f132310', 10), +// n: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe661ce18ff55987308059b186823851ec7dd9ca1161de93d5174d66e8382e9bb2fe84e47', 16), + }); + + //----------------------------------------------------------------------------- + // + // Guide to Elliptic Curve Cryptography + // Darrel Hankerson, Alfred Menezes, Scott Vanstone + // - Pag: 56, Alorithm 2.43 + // + //----------------------------------------------------------------------------- + Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().slowModule = Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().module; + Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().module = function(aValue) { + var result; + + if (aValue.bitSize() > 564) { + MochiKit.Logging.logWarning("ECC.StandarCurves.B283.finiteField().module: falling back to default implementation"); + result = Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().slowModule(aValue); + } else { + var C, T; + var i; + +//console.log(">>> binaryField.finiteField.(improved)module"); + C = aValue._value.slice(0); + for (i=17; i>=9; i--) { + T = C[i]; + C[i-9] = (((C[i-9] ^ (T<<5) ^ (T<<10) ^ (T<<12) ^ (T<<17)) & 0xffffffff) >>> 0); + C[i-8] = ((C[i-8] ^ (T>>>27) ^ (T>>>22) ^ (T>>>20) ^ (T>>>15)) >>> 0); + } + T = (C[8] >>> 27); + C[0] = ((C[0] ^ T ^ ((T<<5) ^ (T<<7) ^ (T<<12)) & 0xffffffff) >>> 0); + C[8] = (C[8] & 0x07ffffff); + + for(i=9; i<=17; i++) { + C[i] = 0; + } + + result = new Clipperz.Crypto.ECC.BinaryField.Value(C); +//console.log("<<< binaryField.finiteField.(improved)module"); + } + + return result; + }; + } + + return Clipperz.Crypto.ECC.StandardCurves._B283; + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + diff --git a/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/FiniteField.js b/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/FiniteField.js new file mode 100644 index 0000000..3ddf2ec --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/FiniteField.js @@ -0,0 +1,526 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.ECC depends on Clipperz.ByteArray!"; +} +if (typeof(Clipperz.Crypto.ECC) == 'undefined') { Clipperz.Crypto.ECC = {}; } +if (typeof(Clipperz.Crypto.ECC.BinaryField) == 'undefined') { Clipperz.Crypto.ECC.BinaryField = {}; } + +Clipperz.Crypto.ECC.BinaryField.FiniteField = function(args) { + args = args || {}; + this._modulus = args.modulus; + + return this; +} + +Clipperz.Crypto.ECC.BinaryField.FiniteField.prototype = MochiKit.Base.update(null, { + + 'asString': function() { + return "Clipperz.Crypto.ECC.BinaryField.FiniteField (" + this.modulus().asString() + ")"; + }, + + //----------------------------------------------------------------------------- + + 'modulus': function() { + return this._modulus; + }, + + //----------------------------------------------------------------------------- + + '_module': function(aValue) { + var result; + var modulusComparison; +//console.log(">>> binaryField.finiteField.(standard)module"); + + modulusComparison = Clipperz.Crypto.ECC.BinaryField.Value._compare(aValue, this.modulus()._value); + + if (modulusComparison < 0) { + result = aValue; + } else if (modulusComparison == 0) { + result = [0]; + } else { + var modulusBitSize; + var resultBitSize; + + result = aValue; + + modulusBitSize = this.modulus().bitSize(); + resultBitSize = Clipperz.Crypto.ECC.BinaryField.Value._bitSize(result); + while (resultBitSize >= modulusBitSize) { + Clipperz.Crypto.ECC.BinaryField.Value._overwriteXor(result, Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(this.modulus()._value, resultBitSize - modulusBitSize)); + resultBitSize = Clipperz.Crypto.ECC.BinaryField.Value._bitSize(result); + } + } +//console.log("<<< binaryField.finiteField.(standard)module"); + + return result; + }, + + 'module': function(aValue) { + return new Clipperz.Crypto.ECC.BinaryField.Value(this._module(aValue._value.slice(0))); + }, + + //----------------------------------------------------------------------------- + + '_add': function(a, b) { + return Clipperz.Crypto.ECC.BinaryField.Value._xor(a, b); + }, + + '_overwriteAdd': function(a, b) { + Clipperz.Crypto.ECC.BinaryField.Value._overwriteXor(a, b); + }, + + 'add': function(a, b) { + return new Clipperz.Crypto.ECC.BinaryField.Value(this._add(a._value, b._value)); + }, + + //----------------------------------------------------------------------------- + + 'negate': function(aValue) { + return aValue.clone(); + }, + + //----------------------------------------------------------------------------- + + '_multiply': function(a, b) { + var result; + var valueToXor; + var i,c; + + result = [0]; + valueToXor = b; + c = Clipperz.Crypto.ECC.BinaryField.Value._bitSize(a); + for (i=0; i<c; i++) { + if (Clipperz.Crypto.ECC.BinaryField.Value._isBitSet(a, i) === true) { + Clipperz.Crypto.ECC.BinaryField.Value._overwriteXor(result, valueToXor); + } + valueToXor = Clipperz.Crypto.ECC.BinaryField.Value._overwriteShiftLeft(valueToXor, 1); + } + result = this._module(result); + + return result; + }, + + 'multiply': function(a, b) { + return new Clipperz.Crypto.ECC.BinaryField.Value(this._multiply(a._value, b._value)); + }, + + //----------------------------------------------------------------------------- + + '_fastMultiply': function(a, b) { + var result; + var B; + var i,c; + + result = [0]; + B = b.slice(0); // Is this array copy avoidable? + c = 32; + for (i=0; i<c; i++) { + var ii, cc; + + cc = a.length; + for (ii=0; ii<cc; ii++) { + if (((a[ii] >>> i) & 0x01) == 1) { + Clipperz.Crypto.ECC.BinaryField.Value._overwriteXor(result, B, ii); + } + } + + if (i < (c-1)) { + B = Clipperz.Crypto.ECC.BinaryField.Value._overwriteShiftLeft(B, 1); + } + } + result = this._module(result); + + return result; + }, + + 'fastMultiply': function(a, b) { + return new Clipperz.Crypto.ECC.BinaryField.Value(this._fastMultiply(a._value, b._value)); + }, + + //----------------------------------------------------------------------------- + // + // Guide to Elliptic Curve Cryptography + // Darrel Hankerson, Alfred Menezes, Scott Vanstone + // - Pag: 49, Alorithm 2.34 + // + //----------------------------------------------------------------------------- + + '_square': function(aValue) { + var result; + var value; + var c,i; + var precomputedValues; + + value = aValue; + result = new Array(value.length * 2); + precomputedValues = Clipperz.Crypto.ECC.BinaryField.FiniteField.squarePrecomputedBytes; + + c = value.length; + for (i=0; i<c; i++) { + result[i*2] = precomputedValues[(value[i] & 0x000000ff)]; + result[i*2] |= ((precomputedValues[(value[i] & 0x0000ff00) >>> 8]) << 16); + + result[i*2 + 1] = precomputedValues[(value[i] & 0x00ff0000) >>> 16]; + result[i*2 + 1] |= ((precomputedValues[(value[i] & 0xff000000) >>> 24]) << 16); + } + + return this._module(result); + }, + + 'square': function(aValue) { + return new Clipperz.Crypto.ECC.BinaryField.Value(this._square(aValue._value)); + }, + + //----------------------------------------------------------------------------- + + '_inverse': function(aValue) { + var result; + var b, c; + var u, v; + +// b = Clipperz.Crypto.ECC.BinaryField.Value.I._value; + b = [1]; +// c = Clipperz.Crypto.ECC.BinaryField.Value.O._value; + c = [0]; + u = this._module(aValue); + v = this.modulus()._value.slice(0); + + while (Clipperz.Crypto.ECC.BinaryField.Value._bitSize(u) > 1) { + var bitDifferenceSize; + + bitDifferenceSize = Clipperz.Crypto.ECC.BinaryField.Value._bitSize(u) - Clipperz.Crypto.ECC.BinaryField.Value._bitSize(v); + if (bitDifferenceSize < 0) { + var swap; + + swap = u; + u = v; + v = swap; + + swap = c; + c = b; + b = swap; + + bitDifferenceSize = -bitDifferenceSize; + } + + u = this._add(u, Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(v, bitDifferenceSize)); + b = this._add(b, Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(c, bitDifferenceSize)); +// this._overwriteAdd(u, Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(v, bitDifferenceSize)); +// this._overwriteAdd(b, Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(c, bitDifferenceSize)); + } + + result = this._module(b); + + return result; + }, + + 'inverse': function(aValue) { + return new Clipperz.Crypto.ECC.BinaryField.Value(this._inverse(aValue._value)); + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + + +Clipperz.Crypto.ECC.BinaryField.FiniteField.squarePrecomputedBytes = [ + 0x0000, // 0 = 0000 0000 -> 0000 0000 0000 0000 + 0x0001, // 1 = 0000 0001 -> 0000 0000 0000 0001 + 0x0004, // 2 = 0000 0010 -> 0000 0000 0000 0100 + 0x0005, // 3 = 0000 0011 -> 0000 0000 0000 0101 + 0x0010, // 4 = 0000 0100 -> 0000 0000 0001 0000 + 0x0011, // 5 = 0000 0101 -> 0000 0000 0001 0001 + 0x0014, // 6 = 0000 0110 -> 0000 0000 0001 0100 + 0x0015, // 7 = 0000 0111 -> 0000 0000 0001 0101 + 0x0040, // 8 = 0000 1000 -> 0000 0000 0100 0000 + 0x0041, // 9 = 0000 1001 -> 0000 0000 0100 0001 + 0x0044, // 10 = 0000 1010 -> 0000 0000 0100 0100 + 0x0045, // 11 = 0000 1011 -> 0000 0000 0100 0101 + 0x0050, // 12 = 0000 1100 -> 0000 0000 0101 0000 + 0x0051, // 13 = 0000 1101 -> 0000 0000 0101 0001 + 0x0054, // 14 = 0000 1110 -> 0000 0000 0101 0100 + 0x0055, // 15 = 0000 1111 -> 0000 0000 0101 0101 + + 0x0100, // 16 = 0001 0000 -> 0000 0001 0000 0000 + 0x0101, // 17 = 0001 0001 -> 0000 0001 0000 0001 + 0x0104, // 18 = 0001 0010 -> 0000 0001 0000 0100 + 0x0105, // 19 = 0001 0011 -> 0000 0001 0000 0101 + 0x0110, // 20 = 0001 0100 -> 0000 0001 0001 0000 + 0x0111, // 21 = 0001 0101 -> 0000 0001 0001 0001 + 0x0114, // 22 = 0001 0110 -> 0000 0001 0001 0100 + 0x0115, // 23 = 0001 0111 -> 0000 0001 0001 0101 + 0x0140, // 24 = 0001 1000 -> 0000 0001 0100 0000 + 0x0141, // 25 = 0001 1001 -> 0000 0001 0100 0001 + 0x0144, // 26 = 0001 1010 -> 0000 0001 0100 0100 + 0x0145, // 27 = 0001 1011 -> 0000 0001 0100 0101 + 0x0150, // 28 = 0001 1100 -> 0000 0001 0101 0000 + 0x0151, // 28 = 0001 1101 -> 0000 0001 0101 0001 + 0x0154, // 30 = 0001 1110 -> 0000 0001 0101 0100 + 0x0155, // 31 = 0001 1111 -> 0000 0001 0101 0101 + + 0x0400, // 32 = 0010 0000 -> 0000 0100 0000 0000 + 0x0401, // 33 = 0010 0001 -> 0000 0100 0000 0001 + 0x0404, // 34 = 0010 0010 -> 0000 0100 0000 0100 + 0x0405, // 35 = 0010 0011 -> 0000 0100 0000 0101 + 0x0410, // 36 = 0010 0100 -> 0000 0100 0001 0000 + 0x0411, // 37 = 0010 0101 -> 0000 0100 0001 0001 + 0x0414, // 38 = 0010 0110 -> 0000 0100 0001 0100 + 0x0415, // 39 = 0010 0111 -> 0000 0100 0001 0101 + 0x0440, // 40 = 0010 1000 -> 0000 0100 0100 0000 + 0x0441, // 41 = 0010 1001 -> 0000 0100 0100 0001 + 0x0444, // 42 = 0010 1010 -> 0000 0100 0100 0100 + 0x0445, // 43 = 0010 1011 -> 0000 0100 0100 0101 + 0x0450, // 44 = 0010 1100 -> 0000 0100 0101 0000 + 0x0451, // 45 = 0010 1101 -> 0000 0100 0101 0001 + 0x0454, // 46 = 0010 1110 -> 0000 0100 0101 0100 + 0x0455, // 47 = 0010 1111 -> 0000 0100 0101 0101 + + 0x0500, // 48 = 0011 0000 -> 0000 0101 0000 0000 + 0x0501, // 49 = 0011 0001 -> 0000 0101 0000 0001 + 0x0504, // 50 = 0011 0010 -> 0000 0101 0000 0100 + 0x0505, // 51 = 0011 0011 -> 0000 0101 0000 0101 + 0x0510, // 52 = 0011 0100 -> 0000 0101 0001 0000 + 0x0511, // 53 = 0011 0101 -> 0000 0101 0001 0001 + 0x0514, // 54 = 0011 0110 -> 0000 0101 0001 0100 + 0x0515, // 55 = 0011 0111 -> 0000 0101 0001 0101 + 0x0540, // 56 = 0011 1000 -> 0000 0101 0100 0000 + 0x0541, // 57 = 0011 1001 -> 0000 0101 0100 0001 + 0x0544, // 58 = 0011 1010 -> 0000 0101 0100 0100 + 0x0545, // 59 = 0011 1011 -> 0000 0101 0100 0101 + 0x0550, // 60 = 0011 1100 -> 0000 0101 0101 0000 + 0x0551, // 61 = 0011 1101 -> 0000 0101 0101 0001 + 0x0554, // 62 = 0011 1110 -> 0000 0101 0101 0100 + 0x0555, // 63 = 0011 1111 -> 0000 0101 0101 0101 + + 0x1000, // 64 = 0100 0000 -> 0001 0000 0000 0000 + 0x1001, // 65 = 0100 0001 -> 0001 0000 0000 0001 + 0x1004, // 66 = 0100 0010 -> 0001 0000 0000 0100 + 0x1005, // 67 = 0100 0011 -> 0001 0000 0000 0101 + 0x1010, // 68 = 0100 0100 -> 0001 0000 0001 0000 + 0x1011, // 69 = 0100 0101 -> 0001 0000 0001 0001 + 0x1014, // 70 = 0100 0110 -> 0001 0000 0001 0100 + 0x1015, // 71 = 0100 0111 -> 0001 0000 0001 0101 + 0x1040, // 72 = 0100 1000 -> 0001 0000 0100 0000 + 0x1041, // 73 = 0100 1001 -> 0001 0000 0100 0001 + 0x1044, // 74 = 0100 1010 -> 0001 0000 0100 0100 + 0x1045, // 75 = 0100 1011 -> 0001 0000 0100 0101 + 0x1050, // 76 = 0100 1100 -> 0001 0000 0101 0000 + 0x1051, // 77 = 0100 1101 -> 0001 0000 0101 0001 + 0x1054, // 78 = 0100 1110 -> 0001 0000 0101 0100 + 0x1055, // 79 = 0100 1111 -> 0001 0000 0101 0101 + + 0x1100, // 80 = 0101 0000 -> 0001 0001 0000 0000 + 0x1101, // 81 = 0101 0001 -> 0001 0001 0000 0001 + 0x1104, // 82 = 0101 0010 -> 0001 0001 0000 0100 + 0x1105, // 83 = 0101 0011 -> 0001 0001 0000 0101 + 0x1110, // 84 = 0101 0100 -> 0001 0001 0001 0000 + 0x1111, // 85 = 0101 0101 -> 0001 0001 0001 0001 + 0x1114, // 86 = 0101 0110 -> 0001 0001 0001 0100 + 0x1115, // 87 = 0101 0111 -> 0001 0001 0001 0101 + 0x1140, // 88 = 0101 1000 -> 0001 0001 0100 0000 + 0x1141, // 89 = 0101 1001 -> 0001 0001 0100 0001 + 0x1144, // 90 = 0101 1010 -> 0001 0001 0100 0100 + 0x1145, // 91 = 0101 1011 -> 0001 0001 0100 0101 + 0x1150, // 92 = 0101 1100 -> 0001 0001 0101 0000 + 0x1151, // 93 = 0101 1101 -> 0001 0001 0101 0001 + 0x1154, // 94 = 0101 1110 -> 0001 0001 0101 0100 + 0x1155, // 95 = 0101 1111 -> 0001 0001 0101 0101 + + 0x1400, // 96 = 0110 0000 -> 0001 0100 0000 0000 + 0x1401, // 97 = 0110 0001 -> 0001 0100 0000 0001 + 0x1404, // 98 = 0110 0010 -> 0001 0100 0000 0100 + 0x1405, // 99 = 0110 0011 -> 0001 0100 0000 0101 + 0x1410, // 100 = 0110 0100 -> 0001 0100 0001 0000 + 0x1411, // 101 = 0110 0101 -> 0001 0100 0001 0001 + 0x1414, // 102 = 0110 0110 -> 0001 0100 0001 0100 + 0x1415, // 103 = 0110 0111 -> 0001 0100 0001 0101 + 0x1440, // 104 = 0110 1000 -> 0001 0100 0100 0000 + 0x1441, // 105 = 0110 1001 -> 0001 0100 0100 0001 + 0x1444, // 106 = 0110 1010 -> 0001 0100 0100 0100 + 0x1445, // 107 = 0110 1011 -> 0001 0100 0100 0101 + 0x1450, // 108 = 0110 1100 -> 0001 0100 0101 0000 + 0x1451, // 109 = 0110 1101 -> 0001 0100 0101 0001 + 0x1454, // 110 = 0110 1110 -> 0001 0100 0101 0100 + 0x1455, // 111 = 0110 1111 -> 0001 0100 0101 0101 + + 0x1500, // 112 = 0111 0000 -> 0001 0101 0000 0000 + 0x1501, // 113 = 0111 0001 -> 0001 0101 0000 0001 + 0x1504, // 114 = 0111 0010 -> 0001 0101 0000 0100 + 0x1505, // 115 = 0111 0011 -> 0001 0101 0000 0101 + 0x1510, // 116 = 0111 0100 -> 0001 0101 0001 0000 + 0x1511, // 117 = 0111 0101 -> 0001 0101 0001 0001 + 0x1514, // 118 = 0111 0110 -> 0001 0101 0001 0100 + 0x1515, // 119 = 0111 0111 -> 0001 0101 0001 0101 + 0x1540, // 120 = 0111 1000 -> 0001 0101 0100 0000 + 0x1541, // 121 = 0111 1001 -> 0001 0101 0100 0001 + 0x1544, // 122 = 0111 1010 -> 0001 0101 0100 0100 + 0x1545, // 123 = 0111 1011 -> 0001 0101 0100 0101 + 0x1550, // 124 = 0111 1100 -> 0001 0101 0101 0000 + 0x1551, // 125 = 0111 1101 -> 0001 0101 0101 0001 + 0x1554, // 126 = 0111 1110 -> 0001 0101 0101 0100 + 0x1555, // 127 = 0111 1111 -> 0001 0101 0101 0101 + + 0x4000, // 128 = 1000 0000 -> 0100 0000 0000 0000 + 0x4001, // 129 = 1000 0001 -> 0100 0000 0000 0001 + 0x4004, // 130 = 1000 0010 -> 0100 0000 0000 0100 + 0x4005, // 131 = 1000 0011 -> 0100 0000 0000 0101 + 0x4010, // 132 = 1000 0100 -> 0100 0000 0001 0000 + 0x4011, // 133 = 1000 0101 -> 0100 0000 0001 0001 + 0x4014, // 134 = 1000 0110 -> 0100 0000 0001 0100 + 0x4015, // 135 = 1000 0111 -> 0100 0000 0001 0101 + 0x4040, // 136 = 1000 1000 -> 0100 0000 0100 0000 + 0x4041, // 137 = 1000 1001 -> 0100 0000 0100 0001 + 0x4044, // 138 = 1000 1010 -> 0100 0000 0100 0100 + 0x4045, // 139 = 1000 1011 -> 0100 0000 0100 0101 + 0x4050, // 140 = 1000 1100 -> 0100 0000 0101 0000 + 0x4051, // 141 = 1000 1101 -> 0100 0000 0101 0001 + 0x4054, // 142 = 1000 1110 -> 0100 0000 0101 0100 + 0x4055, // 143 = 1000 1111 -> 0100 0000 0101 0101 + + 0x4100, // 144 = 1001 0000 -> 0100 0001 0000 0000 + 0x4101, // 145 = 1001 0001 -> 0100 0001 0000 0001 + 0x4104, // 146 = 1001 0010 -> 0100 0001 0000 0100 + 0x4105, // 147 = 1001 0011 -> 0100 0001 0000 0101 + 0x4110, // 148 = 1001 0100 -> 0100 0001 0001 0000 + 0x4111, // 149 = 1001 0101 -> 0100 0001 0001 0001 + 0x4114, // 150 = 1001 0110 -> 0100 0001 0001 0100 + 0x4115, // 151 = 1001 0111 -> 0100 0001 0001 0101 + 0x4140, // 152 = 1001 1000 -> 0100 0001 0100 0000 + 0x4141, // 153 = 1001 1001 -> 0100 0001 0100 0001 + 0x4144, // 154 = 1001 1010 -> 0100 0001 0100 0100 + 0x4145, // 155 = 1001 1011 -> 0100 0001 0100 0101 + 0x4150, // 156 = 1001 1100 -> 0100 0001 0101 0000 + 0x4151, // 157 = 1001 1101 -> 0100 0001 0101 0001 + 0x4154, // 158 = 1001 1110 -> 0100 0001 0101 0100 + 0x4155, // 159 = 1001 1111 -> 0100 0001 0101 0101 + + 0x4400, // 160 = 1010 0000 -> 0100 0100 0000 0000 + 0x4401, // 161 = 1010 0001 -> 0100 0100 0000 0001 + 0x4404, // 162 = 1010 0010 -> 0100 0100 0000 0100 + 0x4405, // 163 = 1010 0011 -> 0100 0100 0000 0101 + 0x4410, // 164 = 1010 0100 -> 0100 0100 0001 0000 + 0x4411, // 165 = 1010 0101 -> 0100 0100 0001 0001 + 0x4414, // 166 = 1010 0110 -> 0100 0100 0001 0100 + 0x4415, // 167 = 1010 0111 -> 0100 0100 0001 0101 + 0x4440, // 168 = 1010 1000 -> 0100 0100 0100 0000 + 0x4441, // 169 = 1010 1001 -> 0100 0100 0100 0001 + 0x4444, // 170 = 1010 1010 -> 0100 0100 0100 0100 + 0x4445, // 171 = 1010 1011 -> 0100 0100 0100 0101 + 0x4450, // 172 = 1010 1100 -> 0100 0100 0101 0000 + 0x4451, // 173 = 1010 1101 -> 0100 0100 0101 0001 + 0x4454, // 174 = 1010 1110 -> 0100 0100 0101 0100 + 0x4455, // 175 = 1010 1111 -> 0100 0100 0101 0101 + + 0x4500, // 176 = 1011 0000 -> 0100 0101 0000 0000 + 0x4501, // 177 = 1011 0001 -> 0100 0101 0000 0001 + 0x4504, // 178 = 1011 0010 -> 0100 0101 0000 0100 + 0x4505, // 179 = 1011 0011 -> 0100 0101 0000 0101 + 0x4510, // 180 = 1011 0100 -> 0100 0101 0001 0000 + 0x4511, // 181 = 1011 0101 -> 0100 0101 0001 0001 + 0x4514, // 182 = 1011 0110 -> 0100 0101 0001 0100 + 0x4515, // 183 = 1011 0111 -> 0100 0101 0001 0101 + 0x4540, // 184 = 1011 1000 -> 0100 0101 0100 0000 + 0x4541, // 185 = 1011 1001 -> 0100 0101 0100 0001 + 0x4544, // 186 = 1011 1010 -> 0100 0101 0100 0100 + 0x4545, // 187 = 1011 1011 -> 0100 0101 0100 0101 + 0x4550, // 188 = 1011 1100 -> 0100 0101 0101 0000 + 0x4551, // 189 = 1011 1101 -> 0100 0101 0101 0001 + 0x4554, // 190 = 1011 1110 -> 0100 0101 0101 0100 + 0x4555, // 191 = 1011 1111 -> 0100 0101 0101 0101 + + 0x5000, // 192 = 1100 0000 -> 0101 0000 0000 0000 + 0x5001, // 193 = 1100 0001 -> 0101 0000 0000 0001 + 0x5004, // 194 = 1100 0010 -> 0101 0000 0000 0100 + 0x5005, // 195 = 1100 0011 -> 0101 0000 0000 0101 + 0x5010, // 196 = 1100 0100 -> 0101 0000 0001 0000 + 0x5011, // 197 = 1100 0101 -> 0101 0000 0001 0001 + 0x5014, // 198 = 1100 0110 -> 0101 0000 0001 0100 + 0x5015, // 199 = 1100 0111 -> 0101 0000 0001 0101 + 0x5040, // 200 = 1100 1000 -> 0101 0000 0100 0000 + 0x5041, // 201 = 1100 1001 -> 0101 0000 0100 0001 + 0x5044, // 202 = 1100 1010 -> 0101 0000 0100 0100 + 0x5045, // 203 = 1100 1011 -> 0101 0000 0100 0101 + 0x5050, // 204 = 1100 1100 -> 0101 0000 0101 0000 + 0x5051, // 205 = 1100 1101 -> 0101 0000 0101 0001 + 0x5054, // 206 = 1100 1110 -> 0101 0000 0101 0100 + 0x5055, // 207 = 1100 1111 -> 0101 0000 0101 0101 + + 0x5100, // 208 = 1101 0000 -> 0101 0001 0000 0000 + 0x5101, // 209 = 1101 0001 -> 0101 0001 0000 0001 + 0x5104, // 210 = 1101 0010 -> 0101 0001 0000 0100 + 0x5105, // 211 = 1101 0011 -> 0101 0001 0000 0101 + 0x5110, // 212 = 1101 0100 -> 0101 0001 0001 0000 + 0x5111, // 213 = 1101 0101 -> 0101 0001 0001 0001 + 0x5114, // 214 = 1101 0110 -> 0101 0001 0001 0100 + 0x5115, // 215 = 1101 0111 -> 0101 0001 0001 0101 + 0x5140, // 216 = 1101 1000 -> 0101 0001 0100 0000 + 0x5141, // 217 = 1101 1001 -> 0101 0001 0100 0001 + 0x5144, // 218 = 1101 1010 -> 0101 0001 0100 0100 + 0x5145, // 219 = 1101 1011 -> 0101 0001 0100 0101 + 0x5150, // 220 = 1101 1100 -> 0101 0001 0101 0000 + 0x5151, // 221 = 1101 1101 -> 0101 0001 0101 0001 + 0x5154, // 222 = 1101 1110 -> 0101 0001 0101 0100 + 0x5155, // 223 = 1101 1111 -> 0101 0001 0101 0101 + + 0x5400, // 224 = 1110 0000 -> 0101 0100 0000 0000 + 0x5401, // 225 = 1110 0001 -> 0101 0100 0000 0001 + 0x5404, // 226 = 1110 0010 -> 0101 0100 0000 0100 + 0x5405, // 227 = 1110 0011 -> 0101 0100 0000 0101 + 0x5410, // 228 = 1110 0100 -> 0101 0100 0001 0000 + 0x5411, // 229 = 1110 0101 -> 0101 0100 0001 0001 + 0x5414, // 230 = 1110 0110 -> 0101 0100 0001 0100 + 0x5415, // 231 = 1110 0111 -> 0101 0100 0001 0101 + 0x5440, // 232 = 1110 1000 -> 0101 0100 0100 0000 + 0x5441, // 233 = 1110 1001 -> 0101 0100 0100 0001 + 0x5444, // 234 = 1110 1010 -> 0101 0100 0100 0100 + 0x5445, // 235 = 1110 1011 -> 0101 0100 0100 0101 + 0x5450, // 236 = 1110 1100 -> 0101 0100 0101 0000 + 0x5451, // 237 = 1110 1101 -> 0101 0100 0101 0001 + 0x5454, // 238 = 1110 1110 -> 0101 0100 0101 0100 + 0x5455, // 239 = 1110 1111 -> 0101 0100 0101 0101 + + 0x5500, // 240 = 1111 0000 -> 0101 0101 0000 0000 + 0x5501, // 241 = 1111 0001 -> 0101 0101 0000 0001 + 0x5504, // 242 = 1111 0010 -> 0101 0101 0000 0100 + 0x5505, // 243 = 1111 0011 -> 0101 0101 0000 0101 + 0x5510, // 244 = 1111 0100 -> 0101 0101 0001 0000 + 0x5511, // 245 = 1111 0101 -> 0101 0101 0001 0001 + 0x5514, // 246 = 1111 0110 -> 0101 0101 0001 0100 + 0x5515, // 247 = 1111 0111 -> 0101 0101 0001 0101 + 0x5540, // 248 = 1111 1000 -> 0101 0101 0100 0000 + 0x5541, // 249 = 1111 1001 -> 0101 0101 0100 0001 + 0x5544, // 250 = 1111 1010 -> 0101 0101 0100 0100 + 0x5545, // 251 = 1111 1011 -> 0101 0101 0100 0101 + 0x5550, // 252 = 1111 1100 -> 0101 0101 0101 0000 + 0x5551, // 253 = 1111 1101 -> 0101 0101 0101 0001 + 0x5554, // 254 = 1111 1110 -> 0101 0101 0101 0100 + 0x5555 // 255 = 1111 1111 -> 0101 0101 0101 0101 + +] diff --git a/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Point.js b/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Point.js new file mode 100644 index 0000000..f0739bc --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Point.js @@ -0,0 +1,67 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.ECC depends on Clipperz.ByteArray!"; +} +if (typeof(Clipperz.Crypto.ECC) == 'undefined') { Clipperz.Crypto.ECC = {}; } +if (typeof(Clipperz.Crypto.ECC.BinaryField) == 'undefined') { Clipperz.Crypto.ECC.BinaryField = {}; } + +Clipperz.Crypto.ECC.BinaryField.Point = function(args) { + args = args || {}; + this._x = args.x; + this._y = args.y; + + return this; +} + +Clipperz.Crypto.ECC.BinaryField.Point.prototype = MochiKit.Base.update(null, { + + 'asString': function() { + return "Clipperz.Crypto.ECC.BinaryField.Point (" + this.x() + ", " + this.y() + ")"; + }, + + //----------------------------------------------------------------------------- + + 'x': function() { + return this._x; + }, + + 'y': function() { + return this._y; + }, + + //----------------------------------------------------------------------------- + + 'isZero': function() { + return (this.x().isZero() && this.y().isZero()) + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); diff --git a/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Value.js b/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Value.js new file mode 100644 index 0000000..10d055e --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/ECC/BinaryField/Value.js @@ -0,0 +1,377 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.ECC depends on Clipperz.ByteArray!"; +} +if (typeof(Clipperz.Crypto.ECC) == 'undefined') { Clipperz.Crypto.ECC = {}; } +if (typeof(Clipperz.Crypto.ECC.BinaryField) == 'undefined') { Clipperz.Crypto.ECC.BinaryField = {}; } + +Clipperz.Crypto.ECC.BinaryField.Value = function(aValue, aBase) { + if (aValue.constructor == String) { + var value; + var stringLength; + var numberOfWords; + var i,c; + + if (aBase != 16) { + throw Clipperz.Crypto.ECC.BinaryField.Value.exception.UnsupportedBase; + } + + value = aValue.replace(/ /g, ''); + stringLength = value.length; + numberOfWords = Math.ceil(stringLength / 8); + this._value = new Array(numberOfWords); + + c = numberOfWords; + for (i=0; i<c; i++) { + var word; + + if (i < (c-1)) { + word = parseInt(value.substr(stringLength-((i+1)*8), 8), 16); + } else { + word = parseInt(value.substr(0, stringLength-(i*8)), 16); + } + + this._value[i] = word; + } + } else if (aValue.constructor == Array) { + var itemsToCopy; + + itemsToCopy = aValue.length; + while (aValue[itemsToCopy - 1] == 0) { + itemsToCopy --; + } + + this._value = aValue.slice(0, itemsToCopy); + } else if (aValue.constructor == Number) { + this._value = [aValue]; + } else { +// throw Clipperz.Crypto.ECC.BinaryField.Value.exception.UnsupportedConstructorValueType; + } + + return this; +} + +Clipperz.Crypto.ECC.BinaryField.Value.prototype = MochiKit.Base.update(null, { + + 'value': function() { + return this._value; + }, + + //----------------------------------------------------------------------------- + + 'wordSize': function() { + return this._value.length + }, + + //----------------------------------------------------------------------------- + + 'clone': function() { + return new Clipperz.Crypto.ECC.BinaryField.Value(this._value.slice(0)); + }, + + //----------------------------------------------------------------------------- + + 'isZero': function() { + return (this.compare(Clipperz.Crypto.ECC.BinaryField.Value.O) == 0); + }, + + //----------------------------------------------------------------------------- + + 'asString': function(aBase) { + var result; + var i,c; + + if (aBase != 16) { + throw Clipperz.Crypto.ECC.BinaryField.Value.exception.UnsupportedBase; + } + + result = ""; + c = this.wordSize(); + for (i=0; i<c; i++) { + var wordAsString; + +// wordAsString = ("00000000" + this.value()[i].toString(16)); + wordAsString = ("00000000" + this._value[i].toString(16)); + wordAsString = wordAsString.substring(wordAsString.length - 8); + result = wordAsString + result; + } + + result = result.replace(/^(00)*/, ""); + + if (result == "") { + result = "0"; + } + + return result; + }, + + //----------------------------------------------------------------------------- + + 'shiftLeft': function(aNumberOfBitsToShift) { + return new Clipperz.Crypto.ECC.BinaryField.Value(Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(this._value, aNumberOfBitsToShift)); + }, + + //----------------------------------------------------------------------------- + + 'bitSize': function() { + return Clipperz.Crypto.ECC.BinaryField.Value._bitSize(this._value); + }, + + //----------------------------------------------------------------------------- + + 'isBitSet': function(aBitPosition) { + return Clipperz.Crypto.ECC.BinaryField.Value._isBitSet(this._value, aBitPosition); + }, + + //----------------------------------------------------------------------------- + + 'xor': function(aValue) { + return new Clipperz.Crypto.ECC.BinaryField.Value(Clipperz.Crypto.ECC.BinaryField.Value._xor(this._value, aValue._value)); + }, + + //----------------------------------------------------------------------------- + + 'compare': function(aValue) { + return Clipperz.Crypto.ECC.BinaryField.Value._compare(this._value, aValue._value); + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +Clipperz.Crypto.ECC.BinaryField.Value.O = new Clipperz.Crypto.ECC.BinaryField.Value('0', 16); +Clipperz.Crypto.ECC.BinaryField.Value.I = new Clipperz.Crypto.ECC.BinaryField.Value('1', 16); + +Clipperz.Crypto.ECC.BinaryField.Value._xor = function(a, b, aFirstItemOffset) { + var result; + var resultSize; + var i,c; + var firstItemOffset; + + firstItemOffset = aFirstItemOffset || 0; + resultSize = Math.max((a.length - firstItemOffset), b.length) + firstItemOffset; + + result = new Array(resultSize); + + c = firstItemOffset; + for (i=0; i<c; i++) { + result[i] = a[i]; + } + + c = resultSize; + for (i=firstItemOffset; i<c; i++) { + result[i] = (((a[i] || 0) ^ (b[i - firstItemOffset] || 0)) >>> 0); + } + + return result; +}; + +Clipperz.Crypto.ECC.BinaryField.Value._overwriteXor = function(a, b, aFirstItemOffset) { + var i,c; + var firstItemOffset; + + firstItemOffset = aFirstItemOffset || 0; + + c = Math.max((a.length - firstItemOffset), b.length) + firstItemOffset; + for (i=firstItemOffset; i<c; i++) { + a[i] = (((a[i] || 0) ^ (b[i - firstItemOffset] || 0)) >>> 0); + } +}; + +Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft = function(aWordArray, aNumberOfBitsToShift) { + var numberOfWordsToShift; + var numberOfBitsToShift; + var result; + var overflowValue; + var i,c; + + numberOfWordsToShift = Math.floor(aNumberOfBitsToShift / 32); + numberOfBitsToShift = aNumberOfBitsToShift % 32; + + result = new Array(aWordArray.length + numberOfWordsToShift); + + c = numberOfWordsToShift; + for (i=0; i<c; i++) { + result[i] = 0; + } + + overflowValue = 0; + nextOverflowValue = 0; + + c = aWordArray.length; + for (i=0; i<c; i++) { + var value; + var resultWord; + +// value = this.value()[i]; + value = aWordArray[i]; + + if (numberOfBitsToShift > 0) { + var nextOverflowValue; + + nextOverflowValue = (value >>> (32 - numberOfBitsToShift)); + value = value & (0xffffffff >>> numberOfBitsToShift); + resultWord = (((value << numberOfBitsToShift) | overflowValue) >>> 0); + } else { + resultWord = value; + } + + result[i+numberOfWordsToShift] = resultWord; + overflowValue = nextOverflowValue; + } + + if (overflowValue != 0) { + result[aWordArray.length + numberOfWordsToShift] = overflowValue; + } + + return result; +}; + +Clipperz.Crypto.ECC.BinaryField.Value._overwriteShiftLeft = function(aWordArray, aNumberOfBitsToShift) { + var numberOfWordsToShift; + var numberOfBitsToShift; + var result; + var overflowValue; + var i,c; + + numberOfWordsToShift = Math.floor(aNumberOfBitsToShift / 32); + numberOfBitsToShift = aNumberOfBitsToShift % 32; + + result = new Array(aWordArray.length + numberOfWordsToShift); + + c = numberOfWordsToShift; + for (i=0; i<c; i++) { + result[i] = 0; + } + + overflowValue = 0; + nextOverflowValue = 0; + + c = aWordArray.length; + for (i=0; i<c; i++) { + var value; + var resultWord; + +// value = this.value()[i]; + value = aWordArray[i]; + + if (numberOfBitsToShift > 0) { + var nextOverflowValue; + + nextOverflowValue = (value >>> (32 - numberOfBitsToShift)); + value = value & (0xffffffff >>> numberOfBitsToShift); + resultWord = (((value << numberOfBitsToShift) | overflowValue) >>> 0); + } else { + resultWord = value; + } + + result[i+numberOfWordsToShift] = resultWord; + overflowValue = nextOverflowValue; + } + + if (overflowValue != 0) { + result[aWordArray.length + numberOfWordsToShift] = overflowValue; + } + + return result; +}; + +Clipperz.Crypto.ECC.BinaryField.Value._bitSize = function(aWordArray) { + var result; + var notNullElements; + var mostValuableWord; + var matchingBitsInMostImportantWord; + var mask; + var i,c; + + notNullElements = aWordArray.length; + + if ((aWordArray.length == 1) && (aWordArray[0] == 0)) { + result = 0; + } else { + while((aWordArray[notNullElements - 1] == 0) && (notNullElements > 0)) { + notNullElements --; + } + + result = (notNullElements - 1) * 32; + mostValuableWord = aWordArray[notNullElements - 1]; + + matchingBits = 32; + mask = 0x80000000; + + while ((matchingBits > 0) && ((mostValuableWord & mask) == 0)) { + matchingBits --; + mask >>>= 1; + } + + result += matchingBits; + } + + return result; +}; + +Clipperz.Crypto.ECC.BinaryField.Value._isBitSet = function(aWordArray, aBitPosition) { + var result; + var byteIndex; + var bitIndexInSelectedByte; + + byteIndex = Math.floor(aBitPosition / 32); + bitIndexInSelectedByte = aBitPosition % 32; + + if (byteIndex <= aWordArray.length) { + result = ((aWordArray[byteIndex] & (1 << bitIndexInSelectedByte)) != 0); + } else { + result = false; + } + + return result; +}; + +Clipperz.Crypto.ECC.BinaryField.Value._compare = function(a,b) { + var result; + var i,c; + + result = MochiKit.Base.compare(a.length, b.length); + + c = a.length; + for (i=0; (i<c) && (result==0); i++) { +//console.log("compare[" + c + " - " + i + " - 1] " + this.value()[c-i-1] + ", " + aValue.value()[c-i-1]); +// result = MochiKit.Base.compare(this.value()[c-i-1], aValue.value()[c-i-1]); + result = MochiKit.Base.compare(a[c-i-1], b[c-i-1]); + } + + return result; +}; + + +Clipperz.Crypto.ECC.BinaryField.Value['exception']= { + 'UnsupportedBase': new MochiKit.Base.NamedError("Clipperz.Crypto.ECC.BinaryField.Value.exception.UnsupportedBase"), + 'UnsupportedConstructorValueType': new MochiKit.Base.NamedError("Clipperz.Crypto.ECC.BinaryField.Value.exception.UnsupportedConstructorValueType") +}; diff --git a/frontend/beta/js/Clipperz/Crypto/PRNG.js b/frontend/beta/js/Clipperz/Crypto/PRNG.js new file mode 100644 index 0000000..770ceb1 --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/PRNG.js @@ -0,0 +1,854 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.PRNG depends on Clipperz.ByteArray!"; +} + +try { if (typeof(Clipperz.Crypto.SHA) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.PRNG depends on Clipperz.Crypto.SHA!"; +} + +try { if (typeof(Clipperz.Crypto.AES) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.PRNG depends on Clipperz.Crypto.AES!"; +} + +if (typeof(Clipperz.Crypto.PRNG) == 'undefined') { Clipperz.Crypto.PRNG = {}; } + +//############################################################################# + +Clipperz.Crypto.PRNG.EntropyAccumulator = function(args) { + args = args || {}; +// MochiKit.Base.bindMethods(this); + + this._stack = new Clipperz.ByteArray(); + this._maxStackLengthBeforeHashing = args.maxStackLengthBeforeHashing || 256; + return this; +} + +Clipperz.Crypto.PRNG.EntropyAccumulator.prototype = MochiKit.Base.update(null, { + + 'toString': function() { + return "Clipperz.Crypto.PRNG.EntropyAccumulator"; + }, + + //------------------------------------------------------------------------- + + 'stack': function() { + return this._stack; + }, + + 'setStack': function(aValue) { + this._stack = aValue; + }, + + 'resetStack': function() { + this.stack().reset(); + }, + + 'maxStackLengthBeforeHashing': function() { + return this._maxStackLengthBeforeHashing; + }, + + //------------------------------------------------------------------------- + + 'addRandomByte': function(aValue) { + this.stack().appendByte(aValue); + + if (this.stack().length() > this.maxStackLengthBeforeHashing()) { + this.setStack(Clipperz.Crypto.SHA.sha_d256(this.stack())); + } + }, + + //------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + +Clipperz.Crypto.PRNG.RandomnessSource = function(args) { + args = args || {}; + MochiKit.Base.bindMethods(this); + + this._generator = args.generator || null; + this._sourceId = args.sourceId || null; + this._boostMode = args.boostMode || false; + + this._nextPoolIndex = 0; + + return this; +} + +Clipperz.Crypto.PRNG.RandomnessSource.prototype = MochiKit.Base.update(null, { + + 'generator': function() { + return this._generator; + }, + + 'setGenerator': function(aValue) { + this._generator = aValue; + }, + + //------------------------------------------------------------------------- + + 'boostMode': function() { + return this._boostMode; + }, + + 'setBoostMode': function(aValue) { + this._boostMode = aValue; + }, + + //------------------------------------------------------------------------- + + 'sourceId': function() { + return this._sourceId; + }, + + 'setSourceId': function(aValue) { + this._sourceId = aValue; + }, + + //------------------------------------------------------------------------- + + 'nextPoolIndex': function() { + return this._nextPoolIndex; + }, + + 'incrementNextPoolIndex': function() { + this._nextPoolIndex = ((this._nextPoolIndex + 1) % this.generator().numberOfEntropyAccumulators()); + }, + + //------------------------------------------------------------------------- + + 'updateGeneratorWithValue': function(aRandomValue) { + if (this.generator() != null) { + this.generator().addRandomByte(this.sourceId(), this.nextPoolIndex(), aRandomValue); + this.incrementNextPoolIndex(); + } + }, + + //------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + +Clipperz.Crypto.PRNG.TimeRandomnessSource = function(args) { + args = args || {}; +// MochiKit.Base.bindMethods(this); + + this._intervalTime = args.intervalTime || 1000; + + Clipperz.Crypto.PRNG.RandomnessSource.call(this, args); + + this.collectEntropy(); + return this; +} + +Clipperz.Crypto.PRNG.TimeRandomnessSource.prototype = MochiKit.Base.update(new Clipperz.Crypto.PRNG.RandomnessSource, { + + 'intervalTime': function() { + return this._intervalTime; + }, + + //------------------------------------------------------------------------- + + 'collectEntropy': function() { + var now; + var entropyByte; + var intervalTime; + now = new Date(); + entropyByte = (now.getTime() & 0xff); + + intervalTime = this.intervalTime(); + if (this.boostMode() == true) { + intervalTime = intervalTime / 9; + } + + this.updateGeneratorWithValue(entropyByte); + setTimeout(this.collectEntropy, intervalTime); + }, + + //------------------------------------------------------------------------- + + 'numberOfRandomBits': function() { + return 5; + }, + + //------------------------------------------------------------------------- + + 'pollingFrequency': function() { + return 10; + }, + + //------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//***************************************************************************** + +Clipperz.Crypto.PRNG.MouseRandomnessSource = function(args) { + args = args || {}; + + Clipperz.Crypto.PRNG.RandomnessSource.call(this, args); + + this._numberOfBitsToCollectAtEachEvent = 4; + this._randomBitsCollector = 0; + this._numberOfRandomBitsCollected = 0; + + MochiKit.Signal.connect(document, 'onmousemove', this, 'collectEntropy'); + + return this; +} + +Clipperz.Crypto.PRNG.MouseRandomnessSource.prototype = MochiKit.Base.update(new Clipperz.Crypto.PRNG.RandomnessSource, { + + //------------------------------------------------------------------------- + + 'numberOfBitsToCollectAtEachEvent': function() { + return this._numberOfBitsToCollectAtEachEvent; + }, + + //------------------------------------------------------------------------- + + 'randomBitsCollector': function() { + return this._randomBitsCollector; + }, + + 'setRandomBitsCollector': function(aValue) { + this._randomBitsCollector = aValue; + }, + + 'appendRandomBitsToRandomBitsCollector': function(aValue) { + var collectedBits; + var numberOfRandomBitsCollected; + + numberOfRandomBitsCollected = this.numberOfRandomBitsCollected(); + collectetBits = this.randomBitsCollector() | (aValue << numberOfRandomBitsCollected); + this.setRandomBitsCollector(collectetBits); + numberOfRandomBitsCollected += this.numberOfBitsToCollectAtEachEvent(); + + if (numberOfRandomBitsCollected == 8) { + this.updateGeneratorWithValue(collectetBits); + numberOfRandomBitsCollected = 0; + this.setRandomBitsCollector(0); + } + + this.setNumberOfRandomBitsCollected(numberOfRandomBitsCollected) + }, + + //------------------------------------------------------------------------- + + 'numberOfRandomBitsCollected': function() { + return this._numberOfRandomBitsCollected; + }, + + 'setNumberOfRandomBitsCollected': function(aValue) { + this._numberOfRandomBitsCollected = aValue; + }, + + //------------------------------------------------------------------------- + + 'collectEntropy': function(anEvent) { + var mouseLocation; + var randomBit; + var mask; + + mask = 0xffffffff >>> (32 - this.numberOfBitsToCollectAtEachEvent()); + + mouseLocation = anEvent.mouse().client; + randomBit = ((mouseLocation.x ^ mouseLocation.y) & mask); + this.appendRandomBitsToRandomBitsCollector(randomBit) + }, + + //------------------------------------------------------------------------- + + 'numberOfRandomBits': function() { + return 1; + }, + + //------------------------------------------------------------------------- + + 'pollingFrequency': function() { + return 10; + }, + + //------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//***************************************************************************** + +Clipperz.Crypto.PRNG.KeyboardRandomnessSource = function(args) { + args = args || {}; + Clipperz.Crypto.PRNG.RandomnessSource.call(this, args); + + this._randomBitsCollector = 0; + this._numberOfRandomBitsCollected = 0; + + MochiKit.Signal.connect(document, 'onkeypress', this, 'collectEntropy'); + + return this; +} + +Clipperz.Crypto.PRNG.KeyboardRandomnessSource.prototype = MochiKit.Base.update(new Clipperz.Crypto.PRNG.RandomnessSource, { + + //------------------------------------------------------------------------- + + 'randomBitsCollector': function() { + return this._randomBitsCollector; + }, + + 'setRandomBitsCollector': function(aValue) { + this._randomBitsCollector = aValue; + }, + + 'appendRandomBitToRandomBitsCollector': function(aValue) { + var collectedBits; + var numberOfRandomBitsCollected; + + numberOfRandomBitsCollected = this.numberOfRandomBitsCollected(); + collectetBits = this.randomBitsCollector() | (aValue << numberOfRandomBitsCollected); + this.setRandomBitsCollector(collectetBits); + numberOfRandomBitsCollected ++; + + if (numberOfRandomBitsCollected == 8) { + this.updateGeneratorWithValue(collectetBits); + numberOfRandomBitsCollected = 0; + this.setRandomBitsCollector(0); + } + + this.setNumberOfRandomBitsCollected(numberOfRandomBitsCollected) + }, + + //------------------------------------------------------------------------- + + 'numberOfRandomBitsCollected': function() { + return this._numberOfRandomBitsCollected; + }, + + 'setNumberOfRandomBitsCollected': function(aValue) { + this._numberOfRandomBitsCollected = aValue; + }, + + //------------------------------------------------------------------------- + + 'collectEntropy': function(anEvent) { +/* + var mouseLocation; + var randomBit; + + mouseLocation = anEvent.mouse().client; + + randomBit = ((mouseLocation.x ^ mouseLocation.y) & 0x1); + this.appendRandomBitToRandomBitsCollector(randomBit); +*/ + }, + + //------------------------------------------------------------------------- + + 'numberOfRandomBits': function() { + return 1; + }, + + //------------------------------------------------------------------------- + + 'pollingFrequency': function() { + return 10; + }, + + //------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + +Clipperz.Crypto.PRNG.Fortuna = function(args) { + var i,c; + + args = args || {}; + + this._key = args.seed || null; + if (this._key == null) { + this._counter = 0; + this._key = new Clipperz.ByteArray(); + } else { + this._counter = 1; + } + + this._aesKey = null; + + this._firstPoolReseedLevel = args.firstPoolReseedLevel || 32 || 64; + this._numberOfEntropyAccumulators = args.numberOfEntropyAccumulators || 32; + + this._accumulators = []; + c = this.numberOfEntropyAccumulators(); + for (i=0; i<c; i++) { + this._accumulators.push(new Clipperz.Crypto.PRNG.EntropyAccumulator()); + } + + this._randomnessSources = []; + this._reseedCounter = 0; + + return this; +} + +Clipperz.Crypto.PRNG.Fortuna.prototype = MochiKit.Base.update(null, { + + 'toString': function() { + return "Clipperz.Crypto.PRNG.Fortuna"; + }, + + //------------------------------------------------------------------------- + + 'key': function() { + return this._key; + }, + + 'setKey': function(aValue) { + this._key = aValue; + this._aesKey = null; + }, + + 'aesKey': function() { + if (this._aesKey == null) { + this._aesKey = new Clipperz.Crypto.AES.Key({key:this.key()}); + } + + return this._aesKey; + }, + + 'accumulators': function() { + return this._accumulators; + }, + + 'firstPoolReseedLevel': function() { + return this._firstPoolReseedLevel; + }, + + //------------------------------------------------------------------------- + + 'reseedCounter': function() { + return this._reseedCounter; + }, + + 'incrementReseedCounter': function() { + this._reseedCounter = this._reseedCounter +1; + }, + + //------------------------------------------------------------------------- + + 'reseed': function() { + var newKeySeed; + var reseedCounter; + var reseedCounterMask; + var i, c; + + newKeySeed = this.key(); + this.incrementReseedCounter(); + reseedCounter = this.reseedCounter(); + + c = this.numberOfEntropyAccumulators(); + reseedCounterMask = 0xffffffff >>> (32 - c); + for (i=0; i<c; i++) { + if ((i == 0) || ((reseedCounter & (reseedCounterMask >>> (c - i))) == 0)) { + newKeySeed.appendBlock(this.accumulators()[i].stack()); + this.accumulators()[i].resetStack(); + } + } + + if (reseedCounter == 1) { + c = this.randomnessSources().length; + for (i=0; i<c; i++) { + this.randomnessSources()[i].setBoostMode(false); + } + } + + this.setKey(Clipperz.Crypto.SHA.sha_d256(newKeySeed)); + if (reseedCounter == 1) { +MochiKit.Logging.logDebug("### PRNG.readyToGenerateRandomBytes"); + MochiKit.Signal.signal(this, 'readyToGenerateRandomBytes'); + } + MochiKit.Signal.signal(this, 'reseeded'); + }, + + //------------------------------------------------------------------------- + + 'isReadyToGenerateRandomValues': function() { + return this.reseedCounter() != 0; + }, + + //------------------------------------------------------------------------- + + 'entropyLevel': function() { + return this.accumulators()[0].stack().length() + (this.reseedCounter() * this.firstPoolReseedLevel()); + }, + + //------------------------------------------------------------------------- + + 'counter': function() { + return this._counter; + }, + + 'incrementCounter': function() { + this._counter += 1; + }, + + 'counterBlock': function() { + var result; + + result = new Clipperz.ByteArray().appendWords(this.counter(), 0, 0, 0); + + return result; + }, + + //------------------------------------------------------------------------- + + 'getRandomBlock': function() { + var result; + + result = new Clipperz.ByteArray(Clipperz.Crypto.AES.encryptBlock(this.aesKey(), this.counterBlock().arrayValues())); + this.incrementCounter(); + + return result; + }, + + //------------------------------------------------------------------------- + + 'getRandomBytes': function(aSize) { + var result; + + if (this.isReadyToGenerateRandomValues()) { + var i,c; + var newKey; + + result = new Clipperz.ByteArray(); + + c = Math.ceil(aSize / (128 / 8)); + for (i=0; i<c; i++) { + result.appendBlock(this.getRandomBlock()); + } + + if (result.length() != aSize) { + result = result.split(0, aSize); + } + + newKey = this.getRandomBlock().appendBlock(this.getRandomBlock()); + this.setKey(newKey); + } else { +MochiKit.Logging.logWarning("Fortuna generator has not enough entropy, yet!"); + throw Clipperz.Crypto.PRNG.exception.NotEnoughEntropy; + } + + return result; + }, + + //------------------------------------------------------------------------- + + 'addRandomByte': function(aSourceId, aPoolId, aRandomValue) { + var selectedAccumulator; + + selectedAccumulator = this.accumulators()[aPoolId]; + selectedAccumulator.addRandomByte(aRandomValue); + + if (aPoolId == 0) { + MochiKit.Signal.signal(this, 'addedRandomByte') + if (selectedAccumulator.stack().length() > this.firstPoolReseedLevel()) { + this.reseed(); + } + } + }, + + //------------------------------------------------------------------------- + + 'numberOfEntropyAccumulators': function() { + return this._numberOfEntropyAccumulators; + }, + + //------------------------------------------------------------------------- + + 'randomnessSources': function() { + return this._randomnessSources; + }, + + 'addRandomnessSource': function(aRandomnessSource) { + aRandomnessSource.setGenerator(this); + aRandomnessSource.setSourceId(this.randomnessSources().length); + this.randomnessSources().push(aRandomnessSource); + + if (this.isReadyToGenerateRandomValues() == false) { + aRandomnessSource.setBoostMode(true); + } + }, + + //------------------------------------------------------------------------- + + 'deferredEntropyCollection': function(aValue) { + var result; + +//MochiKit.Logging.logDebug(">>> PRNG.deferredEntropyCollection"); + + if (this.isReadyToGenerateRandomValues()) { +//MochiKit.Logging.logDebug("--- PRNG.deferredEntropyCollection - 1"); + result = aValue; + } else { +//MochiKit.Logging.logDebug("--- PRNG.deferredEntropyCollection - 2"); + var deferredResult; + + Clipperz.NotificationCenter.notify(this, 'updatedProgressState', 'collectingEntropy', true); + + deferredResult = new MochiKit.Async.Deferred(); +// deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("1.2.1 - PRNG.deferredEntropyCollection - 1: " + res); return res;}); + deferredResult.addCallback(MochiKit.Base.partial(MochiKit.Async.succeed, aValue)); +// deferredResult.addBoth(function(res) {MochiKit.Logging.logDebug("1.2.2 - PRNG.deferredEntropyCollection - 2: " + res); return res;}); + MochiKit.Signal.connect(this, + 'readyToGenerateRandomBytes', + deferredResult, + 'callback'); + + result = deferredResult; + } +//MochiKit.Logging.logDebug("<<< PRNG.deferredEntropyCollection - result: " + result); + + return result; + }, + + //------------------------------------------------------------------------- + + 'fastEntropyAccumulationForTestingPurpose': function() { + while (! this.isReadyToGenerateRandomValues()) { + this.addRandomByte(Math.floor(Math.random() * 32), Math.floor(Math.random() * 32), Math.floor(Math.random() * 256)); + } + }, + + //------------------------------------------------------------------------- + + 'dump': function(appendToDoc) { + var tbl; + var i,c; + + tbl = document.createElement("table"); + tbl.border = 0; + with (tbl.style) { + border = "1px solid lightgrey"; + fontFamily = 'Helvetica, Arial, sans-serif'; + fontSize = '8pt'; + //borderCollapse = "collapse"; + } + var hdr = tbl.createTHead(); + var hdrtr = hdr.insertRow(0); + // document.createElement("tr"); + { + var ntd; + + ntd = hdrtr.insertCell(0); + ntd.style.borderBottom = "1px solid lightgrey"; + ntd.style.borderRight = "1px solid lightgrey"; + ntd.appendChild(document.createTextNode("#")); + + ntd = hdrtr.insertCell(1); + ntd.style.borderBottom = "1px solid lightgrey"; + ntd.style.borderRight = "1px solid lightgrey"; + ntd.appendChild(document.createTextNode("s")); + + ntd = hdrtr.insertCell(2); + ntd.colSpan = this.firstPoolReseedLevel(); + ntd.style.borderBottom = "1px solid lightgrey"; + ntd.style.borderRight = "1px solid lightgrey"; + ntd.appendChild(document.createTextNode("base values")); + + ntd = hdrtr.insertCell(3); + ntd.colSpan = 20; + ntd.style.borderBottom = "1px solid lightgrey"; + ntd.appendChild(document.createTextNode("extra values")); + + } + + c = this.accumulators().length; + for (i=0; i<c ; i++) { + var currentAccumulator; + var bdytr; + var bdytd; + var ii, cc; + + currentAccumulator = this.accumulators()[i] + + bdytr = tbl.insertRow(true); + + bdytd = bdytr.insertCell(0); + bdytd.style.borderRight = "1px solid lightgrey"; + bdytd.style.color = "lightgrey"; + bdytd.appendChild(document.createTextNode("" + i)); + + bdytd = bdytr.insertCell(1); + bdytd.style.borderRight = "1px solid lightgrey"; + bdytd.style.color = "gray"; + bdytd.appendChild(document.createTextNode("" + currentAccumulator.stack().length())); + + + cc = Math.max(currentAccumulator.stack().length(), this.firstPoolReseedLevel()); + for (ii=0; ii<cc; ii++) { + var cellText; + + bdytd = bdytr.insertCell(ii + 2); + + if (ii < currentAccumulator.stack().length()) { + cellText = Clipperz.ByteArray.byteToHex(currentAccumulator.stack().byteAtIndex(ii)); + } else { + cellText = "_"; + } + + if (ii == (this.firstPoolReseedLevel() - 1)) { + bdytd.style.borderRight = "1px solid lightgrey"; + } + + bdytd.appendChild(document.createTextNode(cellText)); + } + + } + + + if (appendToDoc) { + var ne = document.createElement("div"); + ne.id = "entropyGeneratorStatus"; + with (ne.style) { + fontFamily = "Courier New, monospace"; + fontSize = "12px"; + lineHeight = "16px"; + borderTop = "1px solid black"; + padding = "10px"; + } + if (document.getElementById(ne.id)) { + MochiKit.DOM.swapDOM(ne.id, ne); + } else { + document.body.appendChild(ne); + } + ne.appendChild(tbl); + } + + return tbl; + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + +Clipperz.Crypto.PRNG.Random = function(args) { + args = args || {}; +// MochiKit.Base.bindMethods(this); + + return this; +} + +Clipperz.Crypto.PRNG.Random.prototype = MochiKit.Base.update(null, { + + 'toString': function() { + return "Clipperz.Crypto.PRNG.Random"; + }, + + //------------------------------------------------------------------------- + + 'getRandomBytes': function(aSize) { +//Clipperz.Profile.start("Clipperz.Crypto.PRNG.Random.getRandomBytes"); + var result; + var i,c; + + result = new Clipperz.ByteArray() + c = aSize || 1; + for (i=0; i<c; i++) { + result.appendByte((Math.random()*255) & 0xff); + } + +//Clipperz.Profile.stop("Clipperz.Crypto.PRNG.Random.getRandomBytes"); + return result; + }, + + //------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" +}); + +//############################################################################# + +_clipperz_crypt_prng_defaultPRNG = null; + +Clipperz.Crypto.PRNG.defaultRandomGenerator = function() { + if (_clipperz_crypt_prng_defaultPRNG == null) { + _clipperz_crypt_prng_defaultPRNG = new Clipperz.Crypto.PRNG.Fortuna(); + + //............................................................. + // + // TimeRandomnessSource + // + //............................................................. + { + var newRandomnessSource; + + newRandomnessSource = new Clipperz.Crypto.PRNG.TimeRandomnessSource({intervalTime:111}); + _clipperz_crypt_prng_defaultPRNG.addRandomnessSource(newRandomnessSource); + } + + //............................................................. + // + // MouseRandomnessSource + // + //............................................................. + { + var newRandomnessSource; + + newRandomnessSource = new Clipperz.Crypto.PRNG.MouseRandomnessSource(); + _clipperz_crypt_prng_defaultPRNG.addRandomnessSource(newRandomnessSource); + } + + //............................................................. + // + // KeyboardRandomnessSource + // + //............................................................. + { + var newRandomnessSource; + + newRandomnessSource = new Clipperz.Crypto.PRNG.KeyboardRandomnessSource(); + _clipperz_crypt_prng_defaultPRNG.addRandomnessSource(newRandomnessSource); + } + + } + + return _clipperz_crypt_prng_defaultPRNG; +}; + +//############################################################################# + +Clipperz.Crypto.PRNG.exception = { + NotEnoughEntropy: new MochiKit.Base.NamedError("Clipperz.Crypto.PRNG.exception.NotEnoughEntropy") +}; + + +MochiKit.DOM.addLoadEvent(Clipperz.Crypto.PRNG.defaultRandomGenerator); diff --git a/frontend/beta/js/Clipperz/Crypto/RSA.js b/frontend/beta/js/Clipperz/Crypto/RSA.js new file mode 100644 index 0000000..4dad8f7 --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/RSA.js @@ -0,0 +1,151 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +try { if (typeof(Clipperz.Crypto.BigInt) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.RSA depends on Clipperz.Crypto.BigInt!"; +} + +if (typeof(Clipperz.Crypto.RSA) == 'undefined') { Clipperz.Crypto.RSA = {}; } + +Clipperz.Crypto.RSA.VERSION = "0.1"; +Clipperz.Crypto.RSA.NAME = "Clipperz.RSA"; + +//############################################################################# + +MochiKit.Base.update(Clipperz.Crypto.RSA, { + + //------------------------------------------------------------------------- + + 'publicKeyWithValues': function (e, d, n) { + var result; + + result = {}; + + if (e.isBigInt) { + result.e = e; + } else { + result.e = new Clipperz.Crypto.BigInt(e, 16); + } + + if (d.isBigInt) { + result.d = d; + } else { + result.d = new Clipperz.Crypto.BigInt(d, 16); + } + + if (n.isBigInt) { + result.n = n; + } else { + result.n = new Clipperz.Crypto.BigInt(n, 16); + } + + return result; + }, + + 'privateKeyWithValues': function(e, d, n) { + return Clipperz.Crypto.RSA.publicKeyWithValues(e, d, n); + }, + + //----------------------------------------------------------------------------- + + 'encryptUsingPublicKey': function (aKey, aMessage) { + var messageValue; + var result; + + messageValue = new Clipperz.Crypto.BigInt(aMessage, 16); + result = messageValue.powerModule(aKey.e, aKey.n); + + return result.asString(16); + }, + + //............................................................................. + + 'decryptUsingPublicKey': function (aKey, aMessage) { + return Clipperz.Crypto.RSA.encryptUsingPublicKey(aKey, aMessage); + }, + + //----------------------------------------------------------------------------- + + 'encryptUsingPrivateKey': function (aKey, aMessage) { + var messageValue; + var result; + + messageValue = new Clipperz.Crypto.BigInt(aMessage, 16); + result = messageValue.powerModule(aKey.d, aKey.n); + + return result.asString(16); + }, + + //............................................................................. + + 'decryptUsingPrivateKey': function (aKey, aMessage) { + return Clipperz.Crypto.RSA.encryptUsingPrivateKey(aKey, aMessage); + }, + + //----------------------------------------------------------------------------- + + 'generatePublicKey': function(aNumberOfBits) { + var result; + var e; + var d; + var n; + + e = new Clipperz.Crypto.BigInt("10001", 16); + + { + var p, q; + var phi; + + do { + p = Clipperz.Crypto.BigInt.randomPrime(aNumberOfBits); + } while (p.module(e).equals(1)); + + do { + q = Clipperz.Crypto.BigInt.randomPrime(aNumberOfBits); + } while ((q.equals(p)) || (q.module(e).equals(1))); + + n = p.multiply(q); + phi = (p.subtract(1).multiply(q.subtract(1))); + d = e.powerModule(-1, phi); + } + + result = Clipperz.Crypto.RSA.publicKeyWithValues(e, d, n); + + return result; + }, + + //------------------------------------------------------------------------- + + __syntaxFix__: "syntax fix" + + //------------------------------------------------------------------------- + +}); + +//############################################################################# + diff --git a/frontend/beta/js/Clipperz/Crypto/SHA.js b/frontend/beta/js/Clipperz/Crypto/SHA.js new file mode 100644 index 0000000..bb50b4f --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/SHA.js @@ -0,0 +1,296 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.PRNG depends on Clipperz.ByteArray!"; +} + +if (typeof(Clipperz.Crypto) == 'undefined') { Clipperz.Crypto = {}; } +if (typeof(Clipperz.Crypto.SHA) == 'undefined') { Clipperz.Crypto.SHA = {}; } + +Clipperz.Crypto.SHA.VERSION = "0.3"; +Clipperz.Crypto.SHA.NAME = "Clipperz.Crypto.SHA"; + +MochiKit.Base.update(Clipperz.Crypto.SHA, { + + '__repr__': function () { + return "[" + this.NAME + " " + this.VERSION + "]"; + }, + + 'toString': function () { + return this.__repr__(); + }, + + //----------------------------------------------------------------------------- + + 'rotateRight': function(aValue, aNumberOfBits) { +//Clipperz.Profile.start("Clipperz.Crypto.SHA.rotateRight"); + var result; + + result = (aValue >>> aNumberOfBits) | (aValue << (32 - aNumberOfBits)); + +//Clipperz.Profile.stop("Clipperz.Crypto.SHA.rotateRight"); + return result; + }, + + 'shiftRight': function(aValue, aNumberOfBits) { +//Clipperz.Profile.start("Clipperz.Crypto.SHA.shiftRight"); + var result; + + result = aValue >>> aNumberOfBits; + +//Clipperz.Profile.stop("Clipperz.Crypto.SHA.shiftRight"); + return result; + }, + + //----------------------------------------------------------------------------- + + 'safeAdd': function() { +//Clipperz.Profile.start("Clipperz.Crypto.SHA.safeAdd"); + var result; + var i, c; + + result = arguments[0]; + c = arguments.length; + for (i=1; i<c; i++) { + var lowerBytesSum; + + lowerBytesSum = (result & 0xffff) + (arguments[i] & 0xffff); + result = (((result >> 16) + (arguments[i] >> 16) + (lowerBytesSum >> 16)) << 16) | (lowerBytesSum & 0xffff); + } + +//Clipperz.Profile.stop("Clipperz.Crypto.SHA.safeAdd"); + return result; + }, + + //----------------------------------------------------------------------------- + + 'sha256_array': function(aValue) { +//Clipperz.Profile.start("Clipperz.Crypto.SHA.sha256_array"); + var result; + var message; + var h0, h1, h2, h3, h4, h5, h6, h7; + var k; + var messageLength; + var messageLengthInBits; + var _i, _c; + var charBits; + var rotateRight; + var shiftRight; + var safeAdd; + var bytesPerBlock; + var currentMessageIndex; + + bytesPerBlock = 512/8; + rotateRight = Clipperz.Crypto.SHA.rotateRight; + shiftRight = Clipperz.Crypto.SHA.shiftRight; + safeAdd = Clipperz.Crypto.SHA.safeAdd; + + charBits = 8; + + h0 = 0x6a09e667; + h1 = 0xbb67ae85; + h2 = 0x3c6ef372; + h3 = 0xa54ff53a; + h4 = 0x510e527f; + h5 = 0x9b05688c; + h6 = 0x1f83d9ab; + h7 = 0x5be0cd19; + + k = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]; + + message = aValue; + messageLength = message.length; + + //Pre-processing: + message.push(0x80); // append a single "1" bit to message + + _c = (512 - (((messageLength + 1) * charBits) % 512) - 64) / charBits; + for (_i=0; _i<_c; _i++) { + message.push(0x00); // append "0" bits until message length ≡ 448 ≡ -64 (mod 512) + } + messageLengthInBits = messageLength * charBits; + message.push(0x00); // the 4 most high byte are alway 0 as message length is represented with a 32bit value; + message.push(0x00); + message.push(0x00); + message.push(0x00); + message.push((messageLengthInBits >> 24) & 0xff); + message.push((messageLengthInBits >> 16) & 0xff); + message.push((messageLengthInBits >> 8) & 0xff); + message.push( messageLengthInBits & 0xff); + + currentMessageIndex = 0; + while(currentMessageIndex < message.length) { + var w; + var a, b, c, d, e, f, g, h; + + w = Array(64); + + _c = 16; + for (_i=0; _i<_c; _i++) { + var _j; + + _j = currentMessageIndex + _i*4; + w[_i] = (message[_j] << 24) | (message[_j + 1] << 16) | (message[_j + 2] << 8) | (message[_j + 3] << 0); + } + + _c = 64; + for (_i=16; _i<_c; _i++) { + var s0, s1; + + s0 = (rotateRight(w[_i-15], 7)) ^ (rotateRight(w[_i-15], 18)) ^ (shiftRight(w[_i-15], 3)); + s1 = (rotateRight(w[_i-2], 17)) ^ (rotateRight(w[_i-2], 19)) ^ (shiftRight(w[_i-2], 10)); + w[_i] = safeAdd(w[_i-16], s0, w[_i-7], s1); + } + + a=h0; b=h1; c=h2; d=h3; e=h4; f=h5; g=h6; h=h7; + + _c = 64; + for (_i=0; _i<_c; _i++) { + var s0, s1, ch, maj, t1, t2; + + s0 = (rotateRight(a, 2)) ^ (rotateRight(a, 13)) ^ (rotateRight(a, 22)); + maj = (a & b) ^ (a & c) ^ (b & c); + t2 = safeAdd(s0, maj); + s1 = (rotateRight(e, 6)) ^ (rotateRight(e, 11)) ^ (rotateRight(e, 25)); + ch = (e & f) ^ ((~e) & g); + t1 = safeAdd(h, s1, ch, k[_i], w[_i]); + + h = g; + g = f; + f = e; + e = safeAdd(d, t1); + d = c; + c = b; + b = a; + a = safeAdd(t1, t2); + } + + h0 = safeAdd(h0, a); + h1 = safeAdd(h1, b); + h2 = safeAdd(h2, c); + h3 = safeAdd(h3, d); + h4 = safeAdd(h4, e); + h5 = safeAdd(h5, f); + h6 = safeAdd(h6, g); + h7 = safeAdd(h7, h); + + currentMessageIndex += bytesPerBlock; + } + + result = new Array(256/8); + result[0] = (h0 >> 24) & 0xff; + result[1] = (h0 >> 16) & 0xff; + result[2] = (h0 >> 8) & 0xff; + result[3] = h0 & 0xff; + + result[4] = (h1 >> 24) & 0xff; + result[5] = (h1 >> 16) & 0xff; + result[6] = (h1 >> 8) & 0xff; + result[7] = h1 & 0xff; + + result[8] = (h2 >> 24) & 0xff; + result[9] = (h2 >> 16) & 0xff; + result[10] = (h2 >> 8) & 0xff; + result[11] = h2 & 0xff; + + result[12] = (h3 >> 24) & 0xff; + result[13] = (h3 >> 16) & 0xff; + result[14] = (h3 >> 8) & 0xff; + result[15] = h3 & 0xff; + + result[16] = (h4 >> 24) & 0xff; + result[17] = (h4 >> 16) & 0xff; + result[18] = (h4 >> 8) & 0xff; + result[19] = h4 & 0xff; + + result[20] = (h5 >> 24) & 0xff; + result[21] = (h5 >> 16) & 0xff; + result[22] = (h5 >> 8) & 0xff; + result[23] = h5 & 0xff; + + result[24] = (h6 >> 24) & 0xff; + result[25] = (h6 >> 16) & 0xff; + result[26] = (h6 >> 8) & 0xff; + result[27] = h6 & 0xff; + + result[28] = (h7 >> 24) & 0xff; + result[29] = (h7 >> 16) & 0xff; + result[30] = (h7 >> 8) & 0xff; + result[31] = h7 & 0xff; + +//Clipperz.Profile.stop("Clipperz.Crypto.SHA.sha256_array"); + return result; + }, + + //----------------------------------------------------------------------------- + + 'sha256': function(aValue) { +//Clipperz.Profile.start("Clipperz.Crypto.SHA.sha256"); + var result; + var resultArray; + var valueArray; + + valueArray = aValue.arrayValues(); + resultArray = Clipperz.Crypto.SHA.sha256_array(valueArray); + + result = new Clipperz.ByteArray(resultArray); + +//Clipperz.Profile.stop("Clipperz.Crypto.SHA.sha256"); + return result; + }, + + //----------------------------------------------------------------------------- + + 'sha_d256': function(aValue) { +//Clipperz.Profile.start("Clipperz.Crypto.SHA.sha_d256"); + var result; + var resultArray; + var valueArray; + + valueArray = aValue.arrayValues(); + resultArray = Clipperz.Crypto.SHA.sha256_array(valueArray); + resultArray = Clipperz.Crypto.SHA.sha256_array(resultArray); + + result = new Clipperz.ByteArray(resultArray); + +//Clipperz.Profile.stop("Clipperz.Crypto.SHA.sha256"); + return result; + }, + + //----------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" + +}); diff --git a/frontend/beta/js/Clipperz/Crypto/SRP.js b/frontend/beta/js/Clipperz/Crypto/SRP.js new file mode 100644 index 0000000..0eef6ec --- a/dev/null +++ b/frontend/beta/js/Clipperz/Crypto/SRP.js @@ -0,0 +1,331 @@ +/* + +Copyright 2008-2011 Clipperz Srl + +This file is part of Clipperz's Javascript Crypto Library. +Javascript Crypto Library provides web developers with an extensive +and efficient set of cryptographic functions. The library aims to +obtain maximum execution speed while preserving modularity and +reusability. +For further information about its features and functionalities please +refer to http://www.clipperz.com + +* Javascript Crypto Library is free software: you can redistribute + it and/or modify it under the terms of the GNU Affero General Public + License as published by the Free Software Foundation, either version + 3 of the License, or (at your option) any later version. + +* Javascript Crypto Library is distributed in the hope that it will + be useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU Affero General Public License for more details. + +* You should have received a copy of the GNU Affero General Public + License along with Javascript Crypto Library. If not, see + <http://www.gnu.org/licenses/>. + +*/ + +try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.PRNG depends on Clipperz.ByteArray!"; +} + +try { if (typeof(Clipperz.Crypto.BigInt) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.SRP depends on Clipperz.Crypto.BigInt!"; +} + +try { if (typeof(Clipperz.Crypto.PRNG) == 'undefined') { throw ""; }} catch (e) { + throw "Clipperz.Crypto.SRP depends on Clipperz.Crypto.PRNG!"; +} + +if (typeof(Clipperz.Crypto.SRP) == 'undefined') { Clipperz.Crypto.SRP = {}; } + +Clipperz.Crypto.SRP.VERSION = "0.1"; +Clipperz.Crypto.SRP.NAME = "Clipperz.Crypto.SRP"; + +//############################################################################# + +MochiKit.Base.update(Clipperz.Crypto.SRP, { + + '_n': null, + '_g': null, + //------------------------------------------------------------------------- + + 'n': function() { + if (Clipperz.Crypto.SRP._n == null) { + Clipperz.Crypto.SRP._n = new Clipperz.Crypto.BigInt("115b8b692e0e045692cf280b436735c77a5a9e8a9e7ed56c965f87db5b2a2ece3", 16); + } + + return Clipperz.Crypto.SRP._n; + }, + + //------------------------------------------------------------------------- + + 'g': function() { + if (Clipperz.Crypto.SRP._g == null) { + Clipperz.Crypto.SRP._g = new Clipperz.Crypto.BigInt(2); // eventually 5 (as suggested on the Diffi-Helmann documentation) + } + + return Clipperz.Crypto.SRP._g; + }, + + //----------------------------------------------------------------------------- + + 'exception': { + 'InvalidValue': new MochiKit.Base.NamedError("Clipperz.Crypto.SRP.exception.InvalidValue") + }, + + //------------------------------------------------------------------------- + __syntaxFix__: "syntax fix" + +}); + +//############################################################################# +// +// S R P C o n n e c t i o n version 1.0 +// +//============================================================================= +Clipperz.Crypto.SRP.Connection = function (args) { + args = args || {}; + + this._C = args.C; + this._P = args.P; + this.hash = args.hash; + + this._a = null; + this._A = null; + + this._s = null; + this._B = null; + + this._x = null; + + this._u = null; + this._K = null; + this._M1 = null; + this._M2 = null; + + this._sessionKey = null; + + return this; +} + +Clipperz.Crypto.SRP.Connection.prototype = MochiKit.Base.update(null, { + + 'toString': function () { + return "Clipperz.Crypto.SRP.Connection (username: " + this.username() + "). Status: " + this.statusDescription(); + }, + + //------------------------------------------------------------------------- + + 'C': function () { + return this._C; + }, + + //------------------------------------------------------------------------- + + 'P': function () { + return this._P; + }, + + //------------------------------------------------------------------------- + + 'a': function () { + if (this._a == null) { + this._a = new Clipperz.Crypto.BigInt(Clipperz.Crypto.PRNG.defaultRandomGenerator().getRandomBytes(32).toHexString().substring(2), 16); +// this._a = new Clipperz.Crypto.BigInt("37532428169486597638072888476611365392249575518156687476805936694442691012367", 10); +//MochiKit.Logging.logDebug("SRP a: " + this._a); + } + + return this._a; + }, + + //------------------------------------------------------------------------- + + 'A': function () { + if (this._A == null) { + // Warning: this value should be strictly greater than zero: how should we perform this check? + this._A = Clipperz.Crypto.SRP.g().powerModule(this.a(), Clipperz.Crypto.SRP.n()); + + if (this._A.equals(0)) { +MochiKit.Logging.logError("Clipperz.Crypto.SRP.Connection: trying to set 'A' to 0."); + throw Clipperz.Crypto.SRP.exception.InvalidValue; + } +//MochiKit.Logging.logDebug("SRP A: " + this._A); + } + + return this._A; + }, + + //------------------------------------------------------------------------- + + 's': function () { + return this._s; +//MochiKit.Logging.logDebug("SRP s: " + this._S); + }, + + 'set_s': function(aValue) { + this._s = aValue; + }, + + //------------------------------------------------------------------------- + + 'B': function () { + return this._B; + }, + + 'set_B': function(aValue) { + // Warning: this value should be strictly greater than zero: how should we perform this check? + if (! aValue.equals(0)) { + this._B = aValue; +//MochiKit.Logging.logDebug("SRP B: " + this._B); + } else { +MochiKit.Logging.logError("Clipperz.Crypto.SRP.Connection: trying to set 'B' to 0."); + throw Clipperz.Crypto.SRP.exception.InvalidValue; + } + }, + + //------------------------------------------------------------------------- + + 'x': function () { + if (this._x == null) { + this._x = new Clipperz.Crypto.BigInt(this.stringHash(this.s().asString(16, 64) + this.P()), 16); +//MochiKit.Logging.logDebug("SRP x: " + this._x); + } + + return this._x; + }, + + //------------------------------------------------------------------------- + + 'u': function () { + if (this._u == null) { + this._u = new Clipperz.Crypto.BigInt(this.stringHash(this.B().asString()), 16); +//MochiKit.Logging.logDebug("SRP u: " + this._u); + } + + return this._u; + }, + + //------------------------------------------------------------------------- + + 'S': function () { + if (this._S == null) { + var bigint; + var srp; + + bigint = Clipperz.Crypto.BigInt; + srp = Clipperz.Crypto.SRP; + + this._S = bigint.powerModule( + bigint.subtract(this.B(), bigint.powerModule(srp.g(), this.x(), srp.n())), + bigint.add(this.a(), bigint.multiply(this.u(), this.x())), + srp.n() + ) +//MochiKit.Logging.logDebug("SRP S: " + this._S); + } + + return this._S; + }, + + //------------------------------------------------------------------------- + + 'K': function () { + if (this._K == null) { + this._K = this.stringHash(this.S().asString()); +//MochiKit.Logging.logDebug("SRP K: " + this._K); + } + + return this._K; + }, + + //------------------------------------------------------------------------- + + 'M1': function () { + if (this._M1 == null) { + this._M1 = this.stringHash(this.A().asString(10) + this.B().asString(10) + this.K()); +//MochiKit.Logging.logDebug("SRP M1: " + this._M1); + } + + return this._M1; + }, + + //------------------------------------------------------------------------- + + 'M2': function () { + if (this._M2 == null) { + this._M2 = this.stringHash(this.A().asString(10) + this.M1() + this.K()); +//MochiKit.Logging.logDebug("SRP M2: " + this._M2); + } + + return this._M2; + }, + + //========================================================================= + + 'serverSideCredentialsWithSalt': function(aSalt) { + var result; + var s, x, v; + + s = aSalt; + x = this.stringHash(s + this.P()); + v = Clipperz.Crypto.SRP.g().powerModule(new Clipperz.Crypto.BigInt(x, 16), Clipperz.Crypto.SRP.n()); + + result = {}; + result['C'] = this.C(); + result['s'] = s; + result['v'] = v.asString(16); + + return result; + }, + + 'serverSideCredentials': function() { + var result; + var s; + + s = Clipperz.Crypto.PRNG.defaultRandomGenerator().getRandomBytes(32).toHexString().substring(2); + + result = this.serverSideCredentialsWithSalt(s); + + return result; + }, + + //========================================================================= +/* + 'computeServerSide_S': function(b) { + var result; + var v; + var bigint; + var srp; + + bigint = Clipperz.Crypto.BigInt; + srp = Clipperz.Crypto.SRP; + + v = new Clipperz.Crypto.BigInt(srpConnection.serverSideCredentialsWithSalt(this.s().asString(16, 64)).v, 16); +// _S = (this.A().multiply(this.v().modPow(this.u(), this.n()))).modPow(this.b(), this.n()); + result = bigint.powerModule( + bigint.multiply( + this.A(), + bigint.powerModule(v, this.u(), srp.n()) + ), new Clipperz.Crypto.BigInt(b, 10), srp.n() + ); + + return result; + }, +*/ + //========================================================================= + + 'stringHash': function(aValue) { + var result; + + result = this.hash(new Clipperz.ByteArray(aValue)).toHexString().substring(2); + + return result; + }, + + //========================================================================= + __syntaxFix__: "syntax fix" + +}); + +//############################################################################# |