summaryrefslogtreecommitdiffabout
path: root/pwmanager/pwmanager/sha1.cpp
blob: b2eeb4d0ea229399e54889a87984a9e0808f0cac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/* 2003.05.02: Derived from libgcrypt-1.1.12 by Michael Buesch */

/* sha1.c - SHA1 hash function
 *	Copyright (C) 1998, 2001, 2002 Free Software Foundation, Inc.
 *
 * This file is part of Libgcrypt.
 *
 * Libgcrypt is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * Libgcrypt is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 */

/*  Test vectors:
 *
 *  "abc"
 *  A999 3E36 4706 816A BA3E  2571 7850 C26C 9CD0 D89D
 *
 *  "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
 *  8498 3E44 1C3B D26E BAAE  4AA1 F951 29E5 E546 70F1
 */

/***************************************************************************
 * copyright (C) 2004 by Ulf Schenk
 * This file is originaly based on version 1.0.1 of pwmanager
 * and was modified to run on embedded devices that run microkde
 *
 * $Id$
 **************************************************************************/  

#include "sha1.h"
#include "pwmexception.h"

#include <string.h>
#include <stdlib.h>


void Sha1::burn_stack(int bytes)
{
	char buf[128];

	memset(buf, 0, sizeof buf);
	bytes -= sizeof buf;
	if (bytes > 0)
		burn_stack(bytes);
}

void Sha1::sha1_init()
{
	ctx.h0 = 0x67452301;
	ctx.h1 = 0xefcdab89;
	ctx.h2 = 0x98badcfe;
	ctx.h3 = 0x10325476;
	ctx.h4 = 0xc3d2e1f0;
	ctx.nblocks = 0;
	ctx.count = 0;
}

/****************
 * Transform the message X which consists of 16 32-bit-words
 */
void Sha1::transform(const byte *data)
{
	register uint32_t a, b, c, d, e, tm;
	uint32_t x[16];

	/* get values from the chaining vars */
	a = ctx.h0;
	b = ctx.h1;
	c = ctx.h2;
	d = ctx.h3;
	e = ctx.h4;

#ifdef BIG_ENDIAN_HOST
	memcpy(x, data, 64);
#else
	{
		int i;
		byte *p2;
		for (i = 0, p2 = (byte *) x; i < 16; i++, p2 += 4) {
			p2[3] = *data++;
			p2[2] = *data++;
			p2[1] = *data++;
			p2[0] = *data++;
		}
	}
#endif

#define K1  0x5A827999L
#define K2  0x6ED9EBA1L
#define K3  0x8F1BBCDCL
#define K4  0xCA62C1D6L
#define F1(x,y,z)   ( z ^ ( x & ( y ^ z ) ) )
#define F2(x,y,z)   ( x ^ y ^ z )
#define F3(x,y,z)   ( ( x & y ) | ( z & ( x | y ) ) )
#define F4(x,y,z)   ( x ^ y ^ z )

#define M(i) ( tm =   x[i&0x0f] ^ x[(i-14)&0x0f] \
		    ^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f] \
	       , (x[i&0x0f] = rol(tm, 1)) )

#define R(a,b,c,d,e,f,k,m)  do { e += rol( a, 5 )     \
				      + f( b, c, d )  \
				      + k	      \
				      + m;	      \
				 b = rol( b, 30 );    \
			       } while(0)
	R(a, b, c, d, e, F1, K1, x[0]);
	R(e, a, b, c, d, F1, K1, x[1]);
	R(d, e, a, b, c, F1, K1, x[2]);
	R(c, d, e, a, b, F1, K1, x[3]);
	R(b, c, d, e, a, F1, K1, x[4]);
	R(a, b, c, d, e, F1, K1, x[5]);
	R(e, a, b, c, d, F1, K1, x[6]);
	R(d, e, a, b, c, F1, K1, x[7]);
	R(c, d, e, a, b, F1, K1, x[8]);
	R(b, c, d, e, a, F1, K1, x[9]);
	R(a, b, c, d, e, F1, K1, x[10]);
	R(e, a, b, c, d, F1, K1, x[11]);
	R(d, e, a, b, c, F1, K1, x[12]);
	R(c, d, e, a, b, F1, K1, x[13]);
	R(b, c, d, e, a, F1, K1, x[14]);
	R(a, b, c, d, e, F1, K1, x[15]);
	R(e, a, b, c, d, F1, K1, M(16));
	R(d, e, a, b, c, F1, K1, M(17));
	R(c, d, e, a, b, F1, K1, M(18));
	R(b, c, d, e, a, F1, K1, M(19));
	R(a, b, c, d, e, F2, K2, M(20));
	R(e, a, b, c, d, F2, K2, M(21));
	R(d, e, a, b, c, F2, K2, M(22));
	R(c, d, e, a, b, F2, K2, M(23));
	R(b, c, d, e, a, F2, K2, M(24));
	R(a, b, c, d, e, F2, K2, M(25));
	R(e, a, b, c, d, F2, K2, M(26));
	R(d, e, a, b, c, F2, K2, M(27));
	R(c, d, e, a, b, F2, K2, M(28));
	R(b, c, d, e, a, F2, K2, M(29));
	R(a, b, c, d, e, F2, K2, M(30));
	R(e, a, b, c, d, F2, K2, M(31));
	R(d, e, a, b, c, F2, K2, M(32));
	R(c, d, e, a, b, F2, K2, M(33));
	R(b, c, d, e, a, F2, K2, M(34));
	R(a, b, c, d, e, F2, K2, M(35));
	R(e, a, b, c, d, F2, K2, M(36));
	R(d, e, a, b, c, F2, K2, M(37));
	R(c, d, e, a, b, F2, K2, M(38));
	R(b, c, d, e, a, F2, K2, M(39));
	R(a, b, c, d, e, F3, K3, M(40));
	R(e, a, b, c, d, F3, K3, M(41));
	R(d, e, a, b, c, F3, K3, M(42));
	R(c, d, e, a, b, F3, K3, M(43));
	R(b, c, d, e, a, F3, K3, M(44));
	R(a, b, c, d, e, F3, K3, M(45));
	R(e, a, b, c, d, F3, K3, M(46));
	R(d, e, a, b, c, F3, K3, M(47));
	R(c, d, e, a, b, F3, K3, M(48));
	R(b, c, d, e, a, F3, K3, M(49));
	R(a, b, c, d, e, F3, K3, M(50));
	R(e, a, b, c, d, F3, K3, M(51));
	R(d, e, a, b, c, F3, K3, M(52));
	R(c, d, e, a, b, F3, K3, M(53));
	R(b, c, d, e, a, F3, K3, M(54));
	R(a, b, c, d, e, F3, K3, M(55));
	R(e, a, b, c, d, F3, K3, M(56));
	R(d, e, a, b, c, F3, K3, M(57));
	R(c, d, e, a, b, F3, K3, M(58));
	R(b, c, d, e, a, F3, K3, M(59));
	R(a, b, c, d, e, F4, K4, M(60));
	R(e, a, b, c, d, F4, K4, M(61));
	R(d, e, a, b, c, F4, K4, M(62));
	R(c, d, e, a, b, F4, K4, M(63));
	R(b, c, d, e, a, F4, K4, M(64));
	R(a, b, c, d, e, F4, K4, M(65));
	R(e, a, b, c, d, F4, K4, M(66));
	R(d, e, a, b, c, F4, K4, M(67));
	R(c, d, e, a, b, F4, K4, M(68));
	R(b, c, d, e, a, F4, K4, M(69));
	R(a, b, c, d, e, F4, K4, M(70));
	R(e, a, b, c, d, F4, K4, M(71));
	R(d, e, a, b, c, F4, K4, M(72));
	R(c, d, e, a, b, F4, K4, M(73));
	R(b, c, d, e, a, F4, K4, M(74));
	R(a, b, c, d, e, F4, K4, M(75));
	R(e, a, b, c, d, F4, K4, M(76));
	R(d, e, a, b, c, F4, K4, M(77));
	R(c, d, e, a, b, F4, K4, M(78));
	R(b, c, d, e, a, F4, K4, M(79));

	/* update chainig vars */
	ctx.h0 += a;
	ctx.h1 += b;
	ctx.h2 += c;
	ctx.h3 += d;
	ctx.h4 += e;
#undef K1
#undef K2
#undef K3
#undef K4
#undef F1
#undef F2
#undef F3
#undef F4
#undef M
#undef R
}

/* Update the message digest with the contents
 * of INBUF with length INLEN.
 */
void Sha1::sha1_write(const byte * inbuf, uint32_t inlen)
{
	if (ctx.count == 64) {	/* flush the buffer */
		transform(ctx.buf);
		burn_stack(88 + 4 * sizeof(void *));
		ctx.count = 0;
		ctx.nblocks++;
	}
	if (!inbuf)
		return;
	if (ctx.count) {
		for (; inlen && ctx.count < 64; inlen--)
			ctx.buf[ctx.count++] = *inbuf++;
		sha1_write(NULL, 0);
		if (!inlen)
			return;
	}

	while (inlen >= 64) {
		transform(inbuf);
		ctx.count = 0;
		ctx.nblocks++;
		inlen -= 64;
		inbuf += 64;
	}
	burn_stack(88 + 4 * sizeof(void *));
	for (; inlen && ctx.count < 64; inlen--)
		ctx.buf[ctx.count++] = *inbuf++;
}

/* The routine final terminates the computation and
 * returns the digest.
 * The handle is prepared for a new cycle, but adding bytes to the
 * handle will the destroy the returned buffer.
 * Returns: 20 bytes representing the digest.
 */

void Sha1::sha1_final()
{
	uint32_t t, msb, lsb;
	byte *p;

	sha1_write(NULL, 0); /* flush */ ;

	t = ctx.nblocks;
	/* multiply by 64 to make a byte count */
	lsb = t << 6;
	msb = t >> 26;
	/* add the count */
	t = lsb;
	if ((lsb += ctx.count) < t)
		msb++;
	/* multiply by 8 to make a bit count */
	t = lsb;
	lsb <<= 3;
	msb <<= 3;
	msb |= t >> 29;

	if (ctx.count < 56) {	/* enough room */
		ctx.buf[ctx.count++] = 0x80;	/* pad */
		while (ctx.count < 56)
			ctx.buf[ctx.count++] = 0;	/* pad */
	} else {		/* need one extra block */
		ctx.buf[ctx.count++] = 0x80;	/* pad character */
		while (ctx.count < 64)
			ctx.buf[ctx.count++] = 0;
		sha1_write(NULL, 0); /* flush */ ;
		memset(ctx.buf, 0, 56);	/* fill next block with zeroes */
	}
	/* append the 64 bit count */
	ctx.buf[56] = msb >> 24;
	ctx.buf[57] = msb >> 16;
	ctx.buf[58] = msb >> 8;
	ctx.buf[59] = msb;
	ctx.buf[60] = lsb >> 24;
	ctx.buf[61] = lsb >> 16;
	ctx.buf[62] = lsb >> 8;
	ctx.buf[63] = lsb;
	transform(ctx.buf);
	burn_stack(88 + 4 * sizeof(void *));

	p = ctx.buf;
#ifdef BIG_ENDIAN_HOST
#define X(a) do { *(uint32_t*)p = ctx.h##a ; p += 4; } while(0)
#else				/* little endian */
#define X(a) do { *p++ = ctx.h##a >> 24; *p++ = ctx.h##a >> 16;	 \
		      *p++ = ctx.h##a >> 8; *p++ = ctx.h##a; } while(0)
#endif
	X(0);
	X(1);
	X(2);
	X(3);
	X(4);
#undef X

}

string Sha1::sha1_read()
{
	sha1_final();
	string ret;
	ret.assign((const char*)ctx.buf, SHA1_HASH_LEN_BYTE);
	sha1_init();
	return ret;
}

bool Sha1::selfTest()
{
	const char test1[] = { 'a', 'b', 'c' };
	const uint32_t test1_len = array_size(test1);
	const char test1_md[] = { 0xA9, 0x99, 0x3E, 0x36, 0x47, 0x06, 0x81, 0x6A, 0xBA, 0x3E,
				  0x25, 0x71, 0x78, 0x50, 0xC2, 0x6C, 0x9C, 0xD0, 0xD8, 0x9D };
	const char test2[] = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq";
	const uint32_t test2_len = array_size(test2) - 1;
	const char test2_md[] = { 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E, 0xBA, 0xAE,
				  0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5, 0xE5, 0x46, 0x70, 0xF1 };
	const uint32_t test3_len = 640;
	const char test3_single[] = { '0', '1', '2', '3', '4', '5', '6', '7' };
	const uint32_t test3_single_len = array_size(test3_single);
	char test3[test3_len];
	uint32_t i;
	for (i = 0; i < test3_len / test3_single_len; ++i)
		memcpy(test3 + (i * test3_single_len), test3_single, test3_single_len);
	const char test3_md[] = { 0xDE, 0xA3, 0x56, 0xA2, 0xCD, 0xDD, 0x90, 0xC7, 0xA7, 0xEC,
				  0xED, 0xC5, 0xEB, 0xB5, 0x63, 0x93, 0x4F, 0x46, 0x04, 0x52 };
	Sha1 sha1;
	sha1.sha1_write(reinterpret_cast<const byte *>(test1), test1_len);
	if (unlikely(memcmp(sha1.sha1_read().c_str(), test1_md, SHA1_HASH_LEN_BYTE)))
		return false;
	sha1.sha1_write(reinterpret_cast<const byte *>(test2), test2_len);
	if (unlikely(memcmp(sha1.sha1_read().c_str(), test2_md, SHA1_HASH_LEN_BYTE)))
		return false;
	sha1.sha1_write(reinterpret_cast<const byte *>(test3), test3_len);
	if (unlikely(memcmp(sha1.sha1_read().c_str(), test3_md, SHA1_HASH_LEN_BYTE)))
		return false;
	return true;
}