summaryrefslogtreecommitdiff
path: root/noncore/apps/opie-reader/SubAlloc.h
blob: ded2b73f7b09fafbd9fff496b195f17a9f5e4e21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/****************************************************************************
 *  This file is part of PPMd project                                       *
 *  Written and distributed to public domain by Dmitry Shkarin 1997,        *
 *  1999-2001                                                               *
 *  Contents: memory allocation routines                                    *
 ****************************************************************************/

enum { UNIT_SIZE=12, N1=4, N2=4, N3=4, N4=(128+3-1*N1-2*N2-3*N3)/4,
        N_INDEXES=N1+N2+N3+N4 };

#pragma pack(1)
struct BLK_NODE {
    DWORD Stamp;
    BLK_NODE* next;
    BOOL   avail()      const { return (next != NULL); }
    void    link(BLK_NODE* p) { p->next=next; next=p; }
    void  unlink()            { next=next->next; }
    void* remove()            {
        BLK_NODE* p=next;                   unlink();
        Stamp--;                            return p;
    }
    inline void insert(void* pv,int NU);
} BList[N_INDEXES];
struct MEM_BLK: public BLK_NODE { DWORD NU; } _PACK_ATTR;
#pragma pack()

static BYTE Indx2Units[N_INDEXES], Units2Indx[128]; // constants
static DWORD GlueCount, SubAllocatorSize=0;
static BYTE* HeapStart, * pText, * UnitsStart, * LoUnit, * HiUnit;

inline void PrefetchData(void* Addr)
{
#if defined(_USE_PREFETCHING)
    BYTE PrefetchByte = *(volatile BYTE*) Addr;
#endif /* defined(_USE_PREFETCHING) */
}
inline void BLK_NODE::insert(void* pv,int NU) {
    MEM_BLK* p=(MEM_BLK*) pv;               link(p);
    p->Stamp=~0UL;                          p->NU=NU;
    Stamp++;
}
inline UINT U2B(UINT NU) { return 8*NU+4*NU; }
inline void SplitBlock(void* pv,UINT OldIndx,UINT NewIndx)
{
    UINT i, k, UDiff=Indx2Units[OldIndx]-Indx2Units[NewIndx];
    BYTE* p=((BYTE*) pv)+U2B(Indx2Units[NewIndx]);
    if (Indx2Units[i=Units2Indx[UDiff-1]] != UDiff) {
        k=Indx2Units[--i];                  BList[i].insert(p,k);
        p += U2B(k);                        UDiff -= k;
    }
    BList[Units2Indx[UDiff-1]].insert(p,UDiff);
}
DWORD _STDCALL GetUsedMemory()
{
    DWORD i, RetVal=SubAllocatorSize-(HiUnit-LoUnit)-(UnitsStart-pText);
    for (i=0;i < N_INDEXES;i++)
            RetVal -= UNIT_SIZE*Indx2Units[i]*BList[i].Stamp;
    return RetVal;
}
void _STDCALL StopSubAllocator() {
    if ( SubAllocatorSize ) {
        SubAllocatorSize=0;                 delete[] HeapStart;
    }
}
BOOL _STDCALL StartSubAllocator(UINT SASize)
{
    DWORD t=SASize << 19U;
    if (SubAllocatorSize == t)              return TRUE;
    StopSubAllocator();
    if ((HeapStart=new BYTE[t]) == NULL)    return FALSE;
    SubAllocatorSize=t;                     return TRUE;
}
static inline void InitSubAllocator()
{
    memset(BList,0,sizeof(BList));
    HiUnit=(pText=HeapStart)+SubAllocatorSize;
    UINT Diff=UNIT_SIZE*(SubAllocatorSize/8/UNIT_SIZE*7);
    LoUnit=UnitsStart=HiUnit-Diff;          GlueCount=0;
}
static void GlueFreeBlocks()
{
    UINT i, k, sz;
    MEM_BLK s0, * p, * p0, * p1;
    if (LoUnit != HiUnit)                   *LoUnit=0;
    for (i=0, (p0=&s0)->next=NULL;i < N_INDEXES;i++)
            while ( BList[i].avail() ) {
                p=(MEM_BLK*) BList[i].remove();
                if ( !p->NU )               continue;
                while ((p1=p+p->NU)->Stamp == ~0UL) {
                    p->NU += p1->NU;        p1->NU=0;
                }
                p0->link(p);                p0=p;
            }
    while ( s0.avail() ) {
        p=(MEM_BLK*) s0.remove();           sz=p->NU;
        if ( !sz )                          continue;
        for ( ;sz > 128;sz -= 128, p += 128)
                BList[N_INDEXES-1].insert(p,128);
        if (Indx2Units[i=Units2Indx[sz-1]] != sz) {
            k=sz-Indx2Units[--i];           BList[k-1].insert(p+(sz-k),k);
        }
        BList[i].insert(p,Indx2Units[i]);
    }
    GlueCount=1 << 13;
}
static void* _STDCALL AllocUnitsRare(UINT indx)
{
    UINT i=indx;
    if ( !GlueCount ) {
        GlueFreeBlocks();
        if ( BList[i].avail() )             return BList[i].remove();
    }
    do {
        if (++i == N_INDEXES) {
            GlueCount--;                    i=U2B(Indx2Units[indx]);
            return (UnitsStart-pText > i)?(UnitsStart -= i):(NULL);
        }
    } while ( !BList[i].avail() );
    void* RetVal=BList[i].remove();         SplitBlock(RetVal,i,indx);
    return RetVal;
}
inline void* AllocUnits(UINT NU)
{
    UINT indx=Units2Indx[NU-1];
    if ( BList[indx].avail() )              return BList[indx].remove();
    void* RetVal=LoUnit;                    LoUnit += U2B(Indx2Units[indx]);
    if (LoUnit <= HiUnit)                   return RetVal;
    LoUnit -= U2B(Indx2Units[indx]);        return AllocUnitsRare(indx);
}
inline void* AllocContext()
{
    if (HiUnit != LoUnit)                   return (HiUnit -= UNIT_SIZE);
    else if ( BList->avail() )              return BList->remove();
    else                                    return AllocUnitsRare(0);
}
inline void UnitsCpy(void* Dest,void* Src,UINT NU)
{
    DWORD* p1=(DWORD*) Dest, * p2=(DWORD*) Src;
    do {
        p1[0]=p2[0];                        p1[1]=p2[1];
        p1[2]=p2[2];
        p1 += 3;                            p2 += 3;
    } while ( --NU );
}
inline void* ExpandUnits(void* OldPtr,UINT OldNU)
{
    UINT i0=Units2Indx[OldNU-1], i1=Units2Indx[OldNU-1+1];
    if (i0 == i1)                           return OldPtr;
    void* ptr=AllocUnits(OldNU+1);
    if ( ptr ) {
        UnitsCpy(ptr,OldPtr,OldNU);         BList[i0].insert(OldPtr,OldNU);
    }
    return ptr;
}
inline void* ShrinkUnits(void* OldPtr,UINT OldNU,UINT NewNU)
{
    UINT i0=Units2Indx[OldNU-1], i1=Units2Indx[NewNU-1];
    if (i0 == i1)                           return OldPtr;
    if ( BList[i1].avail() ) {
        void* ptr=BList[i1].remove();       UnitsCpy(ptr,OldPtr,NewNU);
        BList[i0].insert(OldPtr,Indx2Units[i0]);
        return ptr;
    } else {
        SplitBlock(OldPtr,i0,i1);           return OldPtr;
    }
}
inline void FreeUnits(void* ptr,UINT NU) {
    UINT indx=Units2Indx[NU-1];
    BList[indx].insert(ptr,Indx2Units[indx]);
}
inline void SpecialFreeUnit(void* ptr)
{
    if ((BYTE*) ptr != UnitsStart)          BList->insert(ptr,1);
    else { *(DWORD*) ptr=~0UL;              UnitsStart += UNIT_SIZE; }
}
inline void* MoveUnitsUp(void* OldPtr,UINT NU)
{
    UINT indx=Units2Indx[NU-1];
    if ((BYTE*) OldPtr > UnitsStart+16*1024 || (BLK_NODE*) OldPtr > BList[indx].next)
            return OldPtr;
    void* ptr=BList[indx].remove();
    UnitsCpy(ptr,OldPtr,NU);                NU=Indx2Units[indx];
    if ((BYTE*) OldPtr != UnitsStart)       BList[indx].insert(OldPtr,NU);
    else                                    UnitsStart += U2B(NU);
    return ptr;
}
static inline void ExpandTextArea()
{
    BLK_NODE* p;
    UINT Count[N_INDEXES];                  memset(Count,0,sizeof(Count));
    while ((p=(BLK_NODE*) UnitsStart)->Stamp == ~0UL) {
        MEM_BLK* pm=(MEM_BLK*) p;           UnitsStart=(BYTE*) (pm+pm->NU);
        Count[Units2Indx[pm->NU-1]]++;      pm->Stamp=0;
    }
    for (UINT i=0;i < N_INDEXES;i++)
        for (p=BList+i;Count[i] != 0;p=p->next)
            while ( !p->next->Stamp ) {
                p->unlink();                BList[i].Stamp--;
                if ( !--Count[i] )          break;
            }
}