summaryrefslogtreecommitdiff
path: root/frontend/delta/js/Clipperz/Crypto/Base.js
Side-by-side diff
Diffstat (limited to 'frontend/delta/js/Clipperz/Crypto/Base.js') (more/less context) (ignore whitespace changes)
-rw-r--r--frontend/delta/js/Clipperz/Crypto/Base.js1847
1 files changed, 1847 insertions, 0 deletions
diff --git a/frontend/delta/js/Clipperz/Crypto/Base.js b/frontend/delta/js/Clipperz/Crypto/Base.js
new file mode 100644
index 0000000..9acfc49
--- a/dev/null
+++ b/frontend/delta/js/Clipperz/Crypto/Base.js
@@ -0,0 +1,1847 @@
+/*
+
+Copyright 2008-2013 Clipperz Srl
+
+This file is part of Clipperz, the online password manager.
+For further information about its features and functionalities please
+refer to http://www.clipperz.com.
+
+* Clipperz is free software: you can redistribute it and/or modify it
+ under the terms of the GNU Affero General Public License as published
+ by the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+* Clipperz is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ See the GNU Affero General Public License for more details.
+
+* You should have received a copy of the GNU Affero General Public
+ License along with Clipperz. If not, see http://www.gnu.org/licenses/.
+
+*/
+
+try { if (typeof(Clipperz.Base) == 'undefined') { throw ""; }} catch (e) {
+ throw "Clipperz.Crypto.Base depends on Clipperz.Base!";
+}
+
+if (typeof(Clipperz.Crypto) == 'undefined') { Clipperz.Crypto = {}; }
+if (typeof(Clipperz.Crypto.Base) == 'undefined') { Clipperz.Crypto.Base = {}; }
+
+Clipperz.Crypto.Base.VERSION = "0.1";
+Clipperz.Crypto.Base.NAME = "Clipperz.Crypto.Base";
+
+//#############################################################################
+// Downloaded on March 30, 2006 from http://anmar.eu.org/projects/jssha2/files/jssha2-0.3.zip (jsSha2/sha256.js)
+//#############################################################################
+
+/* A JavaScript implementation of the Secure Hash Algorithm, SHA-256
+ * Version 0.3 Copyright Angel Marin 2003-2004 - http://anmar.eu.org/
+ * Distributed under the BSD License
+ * Some bits taken from Paul Johnston's SHA-1 implementation
+ */
+var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */
+function safe_add (x, y) {
+ var lsw = (x & 0xFFFF) + (y & 0xFFFF);
+ var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
+ return (msw << 16) | (lsw & 0xFFFF);
+}
+function S (X, n) {return ( X >>> n ) | (X << (32 - n));}
+function R (X, n) {return ( X >>> n );}
+function Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}
+function Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}
+function Sigma0256(x) {return (S(x, 2) ^ S(x, 13) ^ S(x, 22));}
+function Sigma1256(x) {return (S(x, 6) ^ S(x, 11) ^ S(x, 25));}
+function Gamma0256(x) {return (S(x, 7) ^ S(x, 18) ^ R(x, 3));}
+function Gamma1256(x) {return (S(x, 17) ^ S(x, 19) ^ R(x, 10));}
+function core_sha256 (m, l) {
+ var K = new Array(0x428A2F98,0x71374491,0xB5C0FBCF,0xE9B5DBA5,0x3956C25B,0x59F111F1,0x923F82A4,0xAB1C5ED5,0xD807AA98,0x12835B01,0x243185BE,0x550C7DC3,0x72BE5D74,0x80DEB1FE,0x9BDC06A7,0xC19BF174,0xE49B69C1,0xEFBE4786,0xFC19DC6,0x240CA1CC,0x2DE92C6F,0x4A7484AA,0x5CB0A9DC,0x76F988DA,0x983E5152,0xA831C66D,0xB00327C8,0xBF597FC7,0xC6E00BF3,0xD5A79147,0x6CA6351,0x14292967,0x27B70A85,0x2E1B2138,0x4D2C6DFC,0x53380D13,0x650A7354,0x766A0ABB,0x81C2C92E,0x92722C85,0xA2BFE8A1,0xA81A664B,0xC24B8B70,0xC76C51A3,0xD192E819,0xD6990624,0xF40E3585,0x106AA070,0x19A4C116,0x1E376C08,0x2748774C,0x34B0BCB5,0x391C0CB3,0x4ED8AA4A,0x5B9CCA4F,0x682E6FF3,0x748F82EE,0x78A5636F,0x84C87814,0x8CC70208,0x90BEFFFA,0xA4506CEB,0xBEF9A3F7,0xC67178F2);
+ var HASH = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19);
+ var W = new Array(64);
+ var a, b, c, d, e, f, g, h, i, j;
+ var T1, T2;
+ /* append padding */
+ m[l >> 5] |= 0x80 << (24 - l % 32);
+ m[((l + 64 >> 9) << 4) + 15] = l;
+ for ( var i = 0; i<m.length; i+=16 ) {
+ a = HASH[0]; b = HASH[1]; c = HASH[2]; d = HASH[3]; e = HASH[4]; f = HASH[5]; g = HASH[6]; h = HASH[7];
+ for ( var j = 0; j<64; j++) {
+ if (j < 16) W[j] = m[j + i];
+ else W[j] = safe_add(safe_add(safe_add(Gamma1256(W[j - 2]), W[j - 7]), Gamma0256(W[j - 15])), W[j - 16]);
+ T1 = safe_add(safe_add(safe_add(safe_add(h, Sigma1256(e)), Ch(e, f, g)), K[j]), W[j]);
+ T2 = safe_add(Sigma0256(a), Maj(a, b, c));
+ h = g; g = f; f = e; e = safe_add(d, T1); d = c; c = b; b = a; a = safe_add(T1, T2);
+ }
+ HASH[0] = safe_add(a, HASH[0]); HASH[1] = safe_add(b, HASH[1]); HASH[2] = safe_add(c, HASH[2]); HASH[3] = safe_add(d, HASH[3]); HASH[4] = safe_add(e, HASH[4]); HASH[5] = safe_add(f, HASH[5]); HASH[6] = safe_add(g, HASH[6]); HASH[7] = safe_add(h, HASH[7]);
+ }
+ return HASH;
+}
+function str2binb (str) {
+ var bin = Array();
+ var mask = (1 << chrsz) - 1;
+ for(var i = 0; i < str.length * chrsz; i += chrsz)
+ bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i%32);
+ return bin;
+}
+function binb2hex (binarray) {
+ var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
+ var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
+ var str = "";
+ for (var i = 0; i < binarray.length * 4; i++) {
+ str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) + hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8 )) & 0xF);
+ }
+ return str;
+}
+function hex_sha256(s){return binb2hex(core_sha256(str2binb(s),s.length * chrsz));}
+
+
+
+//#############################################################################
+// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (entropy.js)
+//#############################################################################
+
+ // Entropy collection utilities
+
+ /* Start by declaring static storage and initialise
+ the entropy vector from the time we come through
+ here. */
+
+ var entropyData = new Array(); // Collected entropy data
+ var edlen = 0; // Keyboard array data length
+
+ addEntropyTime(); // Start entropy collection with page load time
+ ce(); // Roll milliseconds into initial entropy
+
+ // Add a byte to the entropy vector
+
+ function addEntropyByte(b) {
+ entropyData[edlen++] = b;
+ }
+
+ /* Capture entropy. When the user presses a key or performs
+ various other events for which we can request
+ notification, add the time in 255ths of a second to the
+ entropyData array. The name of the function is short
+ so it doesn't bloat the form object declarations in
+ which it appears in various "onXXX" events. */
+
+ function ce() {
+ addEntropyByte(Math.floor((((new Date).getMilliseconds()) * 255) / 999));
+ }
+
+ // Add a 32 bit quantity to the entropy vector
+
+ function addEntropy32(w) {
+ var i;
+
+ for (i = 0; i < 4; i++) {
+ addEntropyByte(w & 0xFF);
+ w >>= 8;
+ }
+ }
+
+ /* Add the current time and date (milliseconds since the epoch,
+ truncated to 32 bits) to the entropy vector. */
+
+ function addEntropyTime() {
+ addEntropy32((new Date()).getTime());
+ }
+
+ /* Start collection of entropy from mouse movements. The
+ argument specifies the number of entropy items to be
+ obtained from mouse motion, after which mouse motion
+ will be ignored. Note that you can re-enable mouse
+ motion collection at any time if not already underway. */
+
+ var mouseMotionCollect = 0;
+ var oldMoveHandler; // For saving and restoring mouse move handler in IE4
+
+ function mouseMotionEntropy(maxsamp) {
+ if (mouseMotionCollect <= 0) {
+ mouseMotionCollect = maxsamp;
+ if ((document.implementation.hasFeature("Events", "2.0")) &&
+ document.addEventListener) {
+ // Browser supports Document Object Model (DOM) 2 events
+ document.addEventListener("mousemove", mouseMoveEntropy, false);
+ } else {
+ if (document.attachEvent) {
+ // Internet Explorer 5 and above event model
+ document.attachEvent("onmousemove", mouseMoveEntropy);
+ } else {
+ // Internet Explorer 4 event model
+ oldMoveHandler = document.onmousemove;
+ document.onmousemove = mouseMoveEntropy;
+ }
+ }
+//dump("Mouse enable", mouseMotionCollect);
+ }
+ }
+
+ /* Collect entropy from mouse motion events. Note that
+ this is craftily coded to work with either DOM2 or Internet
+ Explorer style events. Note that we don't use every successive
+ mouse movement event. Instead, we XOR the three bytes collected
+ from the mouse and use that to determine how many subsequent
+ mouse movements we ignore before capturing the next one. */
+
+ var mouseEntropyTime = 0; // Delay counter for mouse entropy collection
+
+ function mouseMoveEntropy(e) {
+ if (!e) {
+ e = window.event; // Internet Explorer event model
+ }
+ if (mouseMotionCollect > 0) {
+ if (mouseEntropyTime-- <= 0) {
+ addEntropyByte(e.screenX & 0xFF);
+ addEntropyByte(e.screenY & 0xFF);
+ ce();
+ mouseMotionCollect--;
+ mouseEntropyTime = (entropyData[edlen - 3] ^ entropyData[edlen - 2] ^
+ entropyData[edlen - 1]) % 19;
+//dump("Mouse Move", byteArrayToHex(entropyData.slice(-3)));
+ }
+ if (mouseMotionCollect <= 0) {
+ if (document.removeEventListener) {
+ document.removeEventListener("mousemove", mouseMoveEntropy, false);
+ } else if (document.detachEvent) {
+ document.detachEvent("onmousemove", mouseMoveEntropy);
+ } else {
+ document.onmousemove = oldMoveHandler;
+ }
+//dump("Spung!", 0);
+ }
+ }
+ }
+
+ /* Compute a 32 byte key value from the entropy vector.
+ We compute the value by taking the MD5 sum of the even
+ and odd bytes respectively of the entropy vector, then
+ concatenating the two MD5 sums. */
+
+ function keyFromEntropy() {
+ var i, k = new Array(32);
+
+ if (edlen == 0) {
+ alert("Blooie! Entropy vector void at call to keyFromEntropy.");
+ }
+//dump("Entropy bytes", edlen);
+
+ md5_init();
+ for (i = 0; i < edlen; i += 2) {
+ md5_update(entropyData[i]);
+ }
+ md5_finish();
+ for (i = 0; i < 16; i++) {
+ k[i] = digestBits[i];
+ }
+
+ md5_init();
+ for (i = 1; i < edlen; i += 2) {
+ md5_update(entropyData[i]);
+ }
+ md5_finish();
+ for (i = 0; i < 16; i++) {
+ k[i + 16] = digestBits[i];
+ }
+
+//dump("keyFromEntropy", byteArrayToHex(k));
+ return k;
+ }
+
+//#############################################################################
+// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (aesprng.js)
+//#############################################################################
+
+
+ // AES based pseudorandom number generator
+
+ /* Constructor. Called with an array of 32 byte (0-255) values
+ containing the initial seed. */
+
+ function AESprng(seed) {
+ this.key = new Array();
+ this.key = seed;
+ this.itext = hexToByteArray("9F489613248148F9C27945C6AE62EECA3E3367BB14064E4E6DC67A9F28AB3BD1");
+ this.nbytes = 0; // Bytes left in buffer
+
+ this.next = AESprng_next;
+ this.nextbits = AESprng_nextbits;
+ this.nextInt = AESprng_nextInt;
+ this.round = AESprng_round;
+
+ /* Encrypt the initial text with the seed key
+ three times, feeding the output of the encryption
+ back into the key for the next round. */
+
+ bsb = blockSizeInBits;
+ blockSizeInBits = 256;
+ var i, ct;
+ for (i = 0; i < 3; i++) {
+ this.key = rijndaelEncrypt(this.itext, this.key, "ECB");
+ }
+
+ /* Now make between one and four additional
+ key-feedback rounds, with the number determined
+ by bits from the result of the first three
+ rounds. */
+
+ var n = 1 + (this.key[3] & 2) + (this.key[9] & 1);
+ for (i = 0; i < n; i++) {
+ this.key = rijndaelEncrypt(this.itext, this.key, "ECB");
+ }
+ blockSizeInBits = bsb;
+ }
+
+ function AESprng_round() {
+ bsb = blockSizeInBits;
+ blockSizeInBits = 256;
+ this.key = rijndaelEncrypt(this.itext, this.key, "ECB");
+ this.nbytes = 32;
+ blockSizeInBits = bsb;
+ }
+
+ // Return next byte from the generator
+
+ function AESprng_next() {
+ if (this.nbytes <= 0) {
+ this.round();
+ }
+ return(this.key[--this.nbytes]);
+ }
+
+ // Return n bit integer value (up to maximum integer size)
+
+ function AESprng_nextbits(n) {
+ var i, w = 0, nbytes = Math.floor((n + 7) / 8);
+
+ for (i = 0; i < nbytes; i++) {
+ w = (w << 8) | this.next();
+ }
+ return w & ((1 << n) - 1);
+ }
+
+ // Return integer between 0 and n inclusive
+
+ function AESprng_nextInt(n) {
+ var p = 1, nb = 0;
+
+ // Determine smallest p, 2^p > n
+ // nb = log_2 p
+
+ while (n >= p) {
+ p <<= 1;
+ nb++;
+ }
+ p--;
+
+ /* Generate values from 0 through n by first generating
+ values v from 0 to (2^p)-1, then discarding any results v > n.
+ For the rationale behind this (and why taking
+ values mod (n + 1) is biased toward smaller values, see
+ Ferguson and Schneier, "Practical Cryptography",
+ ISBN 0-471-22357-3, section 10.8). */
+
+ while (true) {
+ var v = this.nextbits(nb) & p;
+
+ if (v <= n) {
+ return v;
+ }
+ }
+ }
+
+//#############################################################################
+// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (md5.js)
+//#############################################################################
+
+/*
+ * md5.jvs 1.0b 27/06/96
+ *
+ * Javascript implementation of the RSA Data Security, Inc. MD5
+ * Message-Digest Algorithm.
+ *
+ * Copyright (c) 1996 Henri Torgemane. All Rights Reserved.
+ *
+ * Permission to use, copy, modify, and distribute this software
+ * and its documentation for any purposes and without
+ * fee is hereby granted provided that this copyright notice
+ * appears in all copies.
+ *
+ * Of course, this soft is provided "as is" without express or implied
+ * warranty of any kind.
+
+ This version contains some trivial reformatting modifications
+ by John Walker.
+
+ */
+
+function array(n) {
+ for (i = 0; i < n; i++) {
+ this[i] = 0;
+ }
+ this.length = n;
+}
+
+/* Some basic logical functions had to be rewritten because of a bug in
+ * Javascript.. Just try to compute 0xffffffff >> 4 with it..
+ * Of course, these functions are slower than the original would be, but
+ * at least, they work!
+ */
+
+function integer(n) {
+ return n % (0xffffffff + 1);
+}
+
+function shr(a, b) {
+ a = integer(a);
+ b = integer(b);
+ if (a - 0x80000000 >= 0) {
+ a = a % 0x80000000;
+ a >>= b;
+ a += 0x40000000 >> (b - 1);
+ } else {
+ a >>= b;
+ }
+ return a;
+}
+
+function shl1(a) {
+ a = a % 0x80000000;
+ if (a & 0x40000000 == 0x40000000) {
+ a -= 0x40000000;
+ a *= 2;
+ a += 0x80000000;
+ } else {
+ a *= 2;
+ }
+ return a;
+}
+
+function shl(a, b) {
+ a = integer(a);
+ b = integer(b);
+ for (var i = 0; i < b; i++) {
+ a = shl1(a);
+ }
+ return a;
+}
+
+function and(a, b) {
+ a = integer(a);
+ b = integer(b);
+ var t1 = a - 0x80000000;
+ var t2 = b - 0x80000000;
+ if (t1 >= 0) {
+ if (t2 >= 0) {
+ return ((t1 & t2) + 0x80000000);
+ } else {
+ return (t1 & b);
+ }
+ } else {
+ if (t2 >= 0) {
+ return (a & t2);
+ } else {
+ return (a & b);
+ }
+ }
+}
+
+function or(a, b) {
+ a = integer(a);
+ b = integer(b);
+ var t1 = a - 0x80000000;
+ var t2 = b - 0x80000000;
+ if (t1 >= 0) {
+ if (t2 >= 0) {
+ return ((t1 | t2) + 0x80000000);
+ } else {
+ return ((t1 | b) + 0x80000000);
+ }
+ } else {
+ if (t2 >= 0) {
+ return ((a | t2) + 0x80000000);
+ } else {
+ return (a | b);
+ }
+ }
+}
+
+function xor(a, b) {
+ a = integer(a);
+ b = integer(b);
+ var t1 = a - 0x80000000;
+ var t2 = b - 0x80000000;
+ if (t1 >= 0) {
+ if (t2 >= 0) {
+ return (t1 ^ t2);
+ } else {
+ return ((t1 ^ b) + 0x80000000);
+ }
+ } else {
+ if (t2 >= 0) {
+ return ((a ^ t2) + 0x80000000);
+ } else {
+ return (a ^ b);
+ }
+ }
+}
+
+function not(a) {
+ a = integer(a);
+ return 0xffffffff - a;
+}
+
+/* Here begin the real algorithm */
+
+var state = new array(4);
+var count = new array(2);
+ count[0] = 0;
+ count[1] = 0;
+var buffer = new array(64);
+var transformBuffer = new array(16);
+var digestBits = new array(16);
+
+var S11 = 7;
+var S12 = 12;
+var S13 = 17;
+var S14 = 22;
+var S21 = 5;
+var S22 = 9;
+var S23 = 14;
+var S24 = 20;
+var S31 = 4;
+var S32 = 11;
+var S33 = 16;
+var S34 = 23;
+var S41 = 6;
+var S42 = 10;
+var S43 = 15;
+var S44 = 21;
+
+function F(x, y, z) {
+ return or(and(x, y), and(not(x), z));
+}
+
+function G(x, y, z) {
+ return or(and(x, z), and(y, not(z)));
+}
+
+function H(x, y, z) {
+ return xor(xor(x, y), z);
+}
+
+function I(x, y, z) {
+ return xor(y ,or(x , not(z)));
+}
+
+function rotateLeft(a, n) {
+ return or(shl(a, n), (shr(a, (32 - n))));
+}
+
+function FF(a, b, c, d, x, s, ac) {
+ a = a + F(b, c, d) + x + ac;
+ a = rotateLeft(a, s);
+ a = a + b;
+ return a;
+}
+
+function GG(a, b, c, d, x, s, ac) {
+ a = a + G(b, c, d) + x + ac;
+ a = rotateLeft(a, s);
+ a = a + b;
+ return a;
+}
+
+function HH(a, b, c, d, x, s, ac) {
+ a = a + H(b, c, d) + x + ac;
+ a = rotateLeft(a, s);
+ a = a + b;
+ return a;
+}
+
+function II(a, b, c, d, x, s, ac) {
+ a = a + I(b, c, d) + x + ac;
+ a = rotateLeft(a, s);
+ a = a + b;
+ return a;
+}
+
+function transform(buf, offset) {
+ var a = 0, b = 0, c = 0, d = 0;
+ var x = transformBuffer;
+
+ a = state[0];
+ b = state[1];
+ c = state[2];
+ d = state[3];
+
+ for (i = 0; i < 16; i++) {
+ x[i] = and(buf[i * 4 + offset], 0xFF);
+ for (j = 1; j < 4; j++) {
+ x[i] += shl(and(buf[i * 4 + j + offset] ,0xFF), j * 8);
+ }
+ }
+
+ /* Round 1 */
+ a = FF( a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
+ d = FF( d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
+ c = FF( c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
+ b = FF( b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
+ a = FF( a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
+ d = FF( d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
+ c = FF( c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
+ b = FF( b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
+ a = FF( a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
+ d = FF( d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
+ c = FF( c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
+ b = FF( b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
+ a = FF( a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
+ d = FF( d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
+ c = FF( c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
+ b = FF( b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
+
+ /* Round 2 */
+ a = GG( a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
+ d = GG( d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
+ c = GG( c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
+ b = GG( b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
+ a = GG( a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
+ d = GG( d, a, b, c, x[10], S22, 0x2441453); /* 22 */
+ c = GG( c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
+ b = GG( b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
+ a = GG( a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
+ d = GG( d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
+ c = GG( c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
+ b = GG( b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
+ a = GG( a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
+ d = GG( d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
+ c = GG( c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
+ b = GG( b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
+
+ /* Round 3 */
+ a = HH( a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
+ d = HH( d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
+ c = HH( c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
+ b = HH( b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
+ a = HH( a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
+ d = HH( d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
+ c = HH( c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
+ b = HH( b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
+ a = HH( a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
+ d = HH( d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
+ c = HH( c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
+ b = HH( b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */
+ a = HH( a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
+ d = HH( d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
+ c = HH( c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
+ b = HH( b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
+
+ /* Round 4 */
+ a = II( a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
+ d = II( d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
+ c = II( c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
+ b = II( b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
+ a = II( a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
+ d = II( d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
+ c = II( c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
+ b = II( b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
+ a = II( a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
+ d = II( d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
+ c = II( c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
+ b = II( b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
+ a = II( a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
+ d = II( d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
+ c = II( c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
+ b = II( b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
+
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+
+}
+
+function md5_init() {
+ count[0] = count[1] = 0;
+ state[0] = 0x67452301;
+ state[1] = 0xefcdab89;
+ state[2] = 0x98badcfe;
+ state[3] = 0x10325476;
+ for (i = 0; i < digestBits.length; i++) {
+ digestBits[i] = 0;
+ }
+}
+
+function md5_update(b) {
+ var index, i;
+
+ index = and(shr(count[0],3) , 0x3F);
+ if (count[0] < 0xFFFFFFFF - 7) {
+ count[0] += 8;
+ } else {
+ count[1]++;
+ count[0] -= 0xFFFFFFFF + 1;
+ count[0] += 8;
+ }
+ buffer[index] = and(b, 0xff);
+ if (index >= 63) {
+ transform(buffer, 0);
+ }
+}
+
+function md5_finish() {
+ var bits = new array(8);
+ var padding;
+ var i = 0, index = 0, padLen = 0;
+
+ for (i = 0; i < 4; i++) {
+ bits[i] = and(shr(count[0], (i * 8)), 0xFF);
+ }
+ for (i = 0; i < 4; i++) {
+ bits[i + 4] = and(shr(count[1], (i * 8)), 0xFF);
+ }
+ index = and(shr(count[0], 3), 0x3F);
+ padLen = (index < 56) ? (56 - index) : (120 - index);
+ padding = new array(64);
+ padding[0] = 0x80;
+ for (i = 0; i < padLen; i++) {
+ md5_update(padding[i]);
+ }
+ for (i = 0; i < 8; i++) {
+ md5_update(bits[i]);
+ }
+
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ digestBits[i * 4 + j] = and(shr(state[i], (j * 8)) , 0xFF);
+ }
+ }
+}
+
+/* End of the MD5 algorithm */
+
+//#############################################################################
+// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (aes.js)
+//#############################################################################
+
+
+/* rijndael.js Rijndael Reference Implementation
+
+ This is a modified version of the software described below,
+ produced in September 2003 by John Walker for use in the
+ JavsScrypt browser-based encryption package. The principal
+ changes are replacing the original getRandomBytes function with
+ one which calls our pseudorandom generator (which must
+ be instantiated and seeded before the first call on getRandomBytes),
+ and changing keySizeInBits to 256. Some code not required by the
+ JavsScrypt application has been commented out. Please see
+ http://www.fourmilab.ch/javascrypt/ for further information on
+ JavaScrypt.
+
+ The following is the original copyright and application
+ information.
+
+ Copyright (c) 2001 Fritz Schneider
+
+ This software is provided as-is, without express or implied warranty.
+ Permission to use, copy, modify, distribute or sell this software, with or
+ without fee, for any purpose and by any individual or organization, is hereby
+ granted, provided that the above copyright notice and this paragraph appear
+ in all copies. Distribution as a part of an application or binary must
+ include the above copyright notice in the documentation and/or other materials
+ provided with the application or distribution.
+
+ As the above disclaimer notes, you are free to use this code however you
+ want. However, I would request that you send me an email
+ (fritz /at/ cs /dot/ ucsd /dot/ edu) to say hi if you find this code useful
+ or instructional. Seeing that people are using the code acts as
+ encouragement for me to continue development. If you *really* want to thank
+ me you can buy the book I wrote with Thomas Powell, _JavaScript:
+ _The_Complete_Reference_ :)
+
+ This code is an UNOPTIMIZED REFERENCE implementation of Rijndael.
+ If there is sufficient interest I can write an optimized (word-based,
+ table-driven) version, although you might want to consider using a
+ compiled language if speed is critical to your application. As it stands,
+ one run of the monte carlo test (10,000 encryptions) can take up to
+ several minutes, depending upon your processor. You shouldn't expect more
+ than a few kilobytes per second in throughput.
+
+ Also note that there is very little error checking in these functions.
+ Doing proper error checking is always a good idea, but the ideal
+ implementation (using the instanceof operator and exceptions) requires
+ IE5+/NS6+, and I've chosen to implement this code so that it is compatible
+ with IE4/NS4.
+
+ And finally, because JavaScript doesn't have an explicit byte/char data
+ type (although JavaScript 2.0 most likely will), when I refer to "byte"
+ in this code I generally mean "32 bit integer with value in the interval
+ [0,255]" which I treat as a byte.
+
+ See http://www-cse.ucsd.edu/~fritz/rijndael.html for more documentation
+ of the (very simple) API provided by this code.
+
+ Fritz Schneider
+ fritz at cs.ucsd.edu
+
+*/
+
+
+// Rijndael parameters -- Valid values are 128, 192, or 256
+
+var keySizeInBits = 256;
+var blockSizeInBits = 128;
+
+//
+// Note: in the following code the two dimensional arrays are indexed as
+// you would probably expect, as array[row][column]. The state arrays
+// are 2d arrays of the form state[4][Nb].
+
+
+// The number of rounds for the cipher, indexed by [Nk][Nb]
+var roundsArray = [ ,,,,[,,,,10,, 12,, 14],,
+ [,,,,12,, 12,, 14],,
+ [,,,,14,, 14,, 14] ];
+
+// The number of bytes to shift by in shiftRow, indexed by [Nb][row]
+var shiftOffsets = [ ,,,,[,1, 2, 3],,[,1, 2, 3],,[,1, 3, 4] ];
+
+// The round constants used in subkey expansion
+var Rcon = [
+0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
+0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
+0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
+0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4,
+0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 ];
+
+// Precomputed lookup table for the SBox
+var SBox = [
+ 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171,
+118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164,
+114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113,
+216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226,
+235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214,
+179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203,
+190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69,
+249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245,
+188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68,
+23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42,
+144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73,
+ 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109,
+141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37,
+ 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62,
+181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225,
+248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
+140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187,
+ 22 ];
+
+// Precomputed lookup table for the inverse SBox
+var SBoxInverse = [
+ 82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215,
+251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222,
+233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66,
+250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73,
+109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92,
+204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21,
+ 70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247,
+228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2,
+193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220,
+234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173,
+ 53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29,
+ 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75,
+198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168,
+ 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81,
+127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160,
+224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97,
+ 23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12,
+125 ];
+
+// This method circularly shifts the array left by the number of elements
+// given in its parameter. It returns the resulting array and is used for
+// the ShiftRow step. Note that shift() and push() could be used for a more
+// elegant solution, but they require IE5.5+, so I chose to do it manually.
+
+function cyclicShiftLeft(theArray, positions) {
+ var temp = theArray.slice(0, positions);
+ theArray = theArray.slice(positions).concat(temp);
+ return theArray;
+}
+
+// Cipher parameters ... do not change these
+var Nk = keySizeInBits / 32;
+var Nb = blockSizeInBits / 32;
+var Nr = roundsArray[Nk][Nb];
+
+// Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec.
+
+function xtime(poly) {
+ poly <<= 1;
+ return ((poly & 0x100) ? (poly ^ 0x11B) : (poly));
+}
+
+// Multiplies the two elements of GF(2^8) together and returns the result.
+// See the Rijndael spec, but should be straightforward: for each power of
+// the indeterminant that has a 1 coefficient in x, add y times that power
+// to the result. x and y should be bytes representing elements of GF(2^8)
+
+function mult_GF256(x, y) {
+ var bit, result = 0;
+
+ for (bit = 1; bit < 256; bit *= 2, y = xtime(y)) {
+ if (x & bit)
+ result ^= y;
+ }
+ return result;
+}
+
+// Performs the substitution step of the cipher. State is the 2d array of
+// state information (see spec) and direction is string indicating whether
+// we are performing the forward substitution ("encrypt") or inverse
+// substitution (anything else)
+
+function byteSub(state, direction) {
+ var S;
+ if (direction == "encrypt") // Point S to the SBox we're using
+ S = SBox;
+ else
+ S = SBoxInverse;
+ for (var i = 0; i < 4; i++) // Substitute for every byte in state
+ for (var j = 0; j < Nb; j++)
+ state[i][j] = S[state[i][j]];
+}
+
+// Performs the row shifting step of the cipher.
+
+function shiftRow(state, direction) {
+ for (var i=1; i<4; i++) // Row 0 never shifts
+ if (direction == "encrypt")
+ state[i] = cyclicShiftLeft(state[i], shiftOffsets[Nb][i]);
+ else
+ state[i] = cyclicShiftLeft(state[i], Nb - shiftOffsets[Nb][i]);
+
+}
+
+// Performs the column mixing step of the cipher. Most of these steps can
+// be combined into table lookups on 32bit values (at least for encryption)
+// to greatly increase the speed.
+
+function mixColumn(state, direction) {
+ var b = []; // Result of matrix multiplications
+ for (var j = 0; j < Nb; j++) { // Go through each column...
+ for (var i = 0; i < 4; i++) { // and for each row in the column...
+ if (direction == "encrypt")
+ b[i] = mult_GF256(state[i][j], 2) ^ // perform mixing
+ mult_GF256(state[(i+1)%4][j], 3) ^
+ state[(i+2)%4][j] ^
+ state[(i+3)%4][j];
+ else
+ b[i] = mult_GF256(state[i][j], 0xE) ^
+ mult_GF256(state[(i+1)%4][j], 0xB) ^
+ mult_GF256(state[(i+2)%4][j], 0xD) ^
+ mult_GF256(state[(i+3)%4][j], 9);
+ }
+ for (var i = 0; i < 4; i++) // Place result back into column
+ state[i][j] = b[i];
+ }
+}
+
+// Adds the current round key to the state information. Straightforward.
+
+function addRoundKey(state, roundKey) {
+ for (var j = 0; j < Nb; j++) { // Step through columns...
+ state[0][j] ^= (roundKey[j] & 0xFF); // and XOR
+ state[1][j] ^= ((roundKey[j]>>8) & 0xFF);
+ state[2][j] ^= ((roundKey[j]>>16) & 0xFF);
+ state[3][j] ^= ((roundKey[j]>>24) & 0xFF);
+ }
+}
+
+// This function creates the expanded key from the input (128/192/256-bit)
+// key. The parameter key is an array of bytes holding the value of the key.
+// The returned value is an array whose elements are the 32-bit words that
+// make up the expanded key.
+
+function keyExpansion(key) {
+ var expandedKey = new Array();
+ var temp;
+
+ // in case the key size or parameters were changed...
+ Nk = keySizeInBits / 32;
+ Nb = blockSizeInBits / 32;
+ Nr = roundsArray[Nk][Nb];
+
+ for (var j=0; j < Nk; j++) // Fill in input key first
+ expandedKey[j] =
+ (key[4*j]) | (key[4*j+1]<<8) | (key[4*j+2]<<16) | (key[4*j+3]<<24);
+
+ // Now walk down the rest of the array filling in expanded key bytes as
+ // per Rijndael's spec
+ for (j = Nk; j < Nb * (Nr + 1); j++) { // For each word of expanded key
+ temp = expandedKey[j - 1];
+ if (j % Nk == 0)
+ temp = ( (SBox[(temp>>8) & 0xFF]) |
+ (SBox[(temp>>16) & 0xFF]<<8) |
+ (SBox[(temp>>24) & 0xFF]<<16) |
+ (SBox[temp & 0xFF]<<24) ) ^ Rcon[Math.floor(j / Nk) - 1];
+ else if (Nk > 6 && j % Nk == 4)
+ temp = (SBox[(temp>>24) & 0xFF]<<24) |
+ (SBox[(temp>>16) & 0xFF]<<16) |
+ (SBox[(temp>>8) & 0xFF]<<8) |
+ (SBox[temp & 0xFF]);
+ expandedKey[j] = expandedKey[j-Nk] ^ temp;
+ }
+ return expandedKey;
+}
+
+// Rijndael's round functions...
+
+function Round(state, roundKey) {
+ byteSub(state, "encrypt");
+ shiftRow(state, "encrypt");
+ mixColumn(state, "encrypt");
+ addRoundKey(state, roundKey);
+}
+
+function InverseRound(state, roundKey) {
+ addRoundKey(state, roundKey);
+ mixColumn(state, "decrypt");
+ shiftRow(state, "decrypt");
+ byteSub(state, "decrypt");
+}
+
+function FinalRound(state, roundKey) {
+ byteSub(state, "encrypt");
+ shiftRow(state, "encrypt");
+ addRoundKey(state, roundKey);
+}
+
+function InverseFinalRound(state, roundKey){
+ addRoundKey(state, roundKey);
+ shiftRow(state, "decrypt");
+ byteSub(state, "decrypt");
+}
+
+// encrypt is the basic encryption function. It takes parameters
+// block, an array of bytes representing a plaintext block, and expandedKey,
+// an array of words representing the expanded key previously returned by
+// keyExpansion(). The ciphertext block is returned as an array of bytes.
+
+function encrypt(block, expandedKey) {
+ var i;
+ if (!block || block.length*8 != blockSizeInBits)
+ return;
+ if (!expandedKey)
+ return;
+
+ block = packBytes(block);
+ addRoundKey(block, expandedKey);
+ for (i=1; i<Nr; i++)
+ Round(block, expandedKey.slice(Nb*i, Nb*(i+1)));
+ FinalRound(block, expandedKey.slice(Nb*Nr));
+ return unpackBytes(block);
+}
+
+// decrypt is the basic decryption function. It takes parameters
+// block, an array of bytes representing a ciphertext block, and expandedKey,
+// an array of words representing the expanded key previously returned by
+// keyExpansion(). The decrypted block is returned as an array of bytes.
+
+function decrypt(block, expandedKey) {
+ var i;
+ if (!block || block.length*8 != blockSizeInBits)
+ return;
+ if (!expandedKey)
+ return;
+
+ block = packBytes(block);
+ InverseFinalRound(block, expandedKey.slice(Nb*Nr));
+ for (i = Nr - 1; i>0; i--)
+ InverseRound(block, expandedKey.slice(Nb*i, Nb*(i+1)));
+ addRoundKey(block, expandedKey);
+ return unpackBytes(block);
+}
+
+/* !NEEDED
+// This method takes a byte array (byteArray) and converts it to a string by
+// applying String.fromCharCode() to each value and concatenating the result.
+// The resulting string is returned. Note that this function SKIPS zero bytes
+// under the assumption that they are padding added in formatPlaintext().
+// Obviously, do not invoke this method on raw data that can contain zero
+// bytes. It is really only appropriate for printable ASCII/Latin-1
+// values. Roll your own function for more robust functionality :)
+
+function byteArrayToString(byteArray) {
+ var result = "";
+ for(var i=0; i<byteArray.length; i++)
+ if (byteArray[i] != 0)
+ result += String.fromCharCode(byteArray[i]);
+ return result;
+}
+*/
+
+// This function takes an array of bytes (byteArray) and converts them
+// to a hexadecimal string. Array element 0 is found at the beginning of
+// the resulting string, high nibble first. Consecutive elements follow
+// similarly, for example [16, 255] --> "10ff". The function returns a
+// string.
+
+function byteArrayToHex(byteArray) {
+ var result = "";
+ if (!byteArray)
+ return;
+ for (var i=0; i<byteArray.length; i++)
+ result += ((byteArray[i]<16) ? "0" : "") + byteArray[i].toString(16);
+
+ return result;
+}
+
+// This function converts a string containing hexadecimal digits to an
+// array of bytes. The resulting byte array is filled in the order the
+// values occur in the string, for example "10FF" --> [16, 255]. This
+// function returns an array.
+
+function hexToByteArray(hexString) {
+ var byteArray = [];
+ if (hexString.length % 2) // must have even length
+ return;
+ if (hexString.indexOf("0x") == 0 || hexString.indexOf("0X") == 0)
+ hexString = hexString.substring(2);
+ for (var i = 0; i<hexString.length; i += 2)
+ byteArray[Math.floor(i/2)] = parseInt(hexString.slice(i, i+2), 16);
+ return byteArray;
+}
+
+// This function packs an array of bytes into the four row form defined by
+// Rijndael. It assumes the length of the array of bytes is divisible by
+// four. Bytes are filled in according to the Rijndael spec (starting with
+// column 0, row 0 to 3). This function returns a 2d array.
+
+function packBytes(octets) {
+ var state = new Array();
+ if (!octets || octets.length % 4)
+ return;
+
+ state[0] = new Array(); state[1] = new Array();
+ state[2] = new Array(); state[3] = new Array();
+ for (var j=0; j<octets.length; j+= 4) {
+ state[0][j/4] = octets[j];
+ state[1][j/4] = octets[j+1];
+ state[2][j/4] = octets[j+2];
+ state[3][j/4] = octets[j+3];
+ }
+ return state;
+}
+
+// This function unpacks an array of bytes from the four row format preferred
+// by Rijndael into a single 1d array of bytes. It assumes the input "packed"
+// is a packed array. Bytes are filled in according to the Rijndael spec.
+// This function returns a 1d array of bytes.
+
+function unpackBytes(packed) {
+ var result = new Array();
+ for (var j=0; j<packed[0].length; j++) {
+ result[result.length] = packed[0][j];
+ result[result.length] = packed[1][j];
+ result[result.length] = packed[2][j];
+ result[result.length] = packed[3][j];
+ }
+ return result;
+}
+
+// This function takes a prospective plaintext (string or array of bytes)
+// and pads it with pseudorandom bytes if its length is not a multiple of the block
+// size. If plaintext is a string, it is converted to an array of bytes
+// in the process. The type checking can be made much nicer using the
+// instanceof operator, but this operator is not available until IE5.0 so I
+// chose to use the heuristic below.
+
+function formatPlaintext(plaintext) {
+ var bpb = blockSizeInBits / 8; // bytes per block
+ var fillWithRandomBits;
+ var i;
+
+ // if primitive string or String instance
+ if ((!((typeof plaintext == "object") &&
+ ((typeof (plaintext[0])) == "number"))) &&
+ ((typeof plaintext == "string") || plaintext.indexOf))
+ {
+ plaintext = plaintext.split("");
+ // Unicode issues here (ignoring high byte)
+ for (i=0; i<plaintext.length; i++) {
+ plaintext[i] = plaintext[i].charCodeAt(0) & 0xFF;
+ }
+ }
+
+ i = plaintext.length % bpb;
+ if (i > 0) {
+//alert("adding " + (bpb - 1) + " bytes");
+// plaintext = plaintext.concat(getRandomBytes(bpb - i));
+ {
+ var paddingBytes;
+ var ii,cc;
+
+ paddingBytes = new Array();
+ cc = bpb - i;
+ for (ii=0; ii<cc; ii++) {
+ paddingBytes[ii] = cc;
+ }
+
+//is("cc", cc);
+//is(getRandomBytes(bpb - i) + "", paddingBytes + "");
+ plaintext = plaintext.concat(paddingBytes);
+ }
+ }
+
+ return plaintext;
+}
+
+// Returns an array containing "howMany" random bytes.
+
+function getRandomBytes(howMany) {
+ var i, bytes = new Array();
+
+//alert("getting some random bytes");
+ for (i = 0; i < howMany; i++) {
+ bytes[i] = prng.nextInt(255);
+ }
+ return bytes;
+}
+
+// rijndaelEncrypt(plaintext, key, mode)
+// Encrypts the plaintext using the given key and in the given mode.
+// The parameter "plaintext" can either be a string or an array of bytes.
+// The parameter "key" must be an array of key bytes. If you have a hex
+// string representing the key, invoke hexToByteArray() on it to convert it
+// to an array of bytes. The third parameter "mode" is a string indicating
+// the encryption mode to use, either "ECB" or "CBC". If the parameter is
+// omitted, ECB is assumed.
+//
+// An array of bytes representing the cihpertext is returned. To convert
+// this array to hex, invoke byteArrayToHex() on it.
+
+function rijndaelEncrypt(plaintext, key, mode) {
+ var expandedKey, i, aBlock;
+ var bpb = blockSizeInBits / 8; // bytes per block
+ var ct; // ciphertext
+
+ if (!plaintext || !key)
+ return;
+ if (key.length*8 != keySizeInBits)
+ return;
+ if (mode == "CBC") {
+ ct = getRandomBytes(bpb); // get IV
+//dump("IV", byteArrayToHex(ct));
+ } else {
+ mode = "ECB";
+ ct = new Array();
+ }
+
+ // convert plaintext to byte array and pad with zeros if necessary.
+ plaintext = formatPlaintext(plaintext);
+
+ expandedKey = keyExpansion(key);
+
+ for (var block = 0; block < plaintext.length / bpb; block++) {
+ aBlock = plaintext.slice(block * bpb, (block + 1) * bpb);
+ if (mode == "CBC") {
+ for (var i = 0; i < bpb; i++) {
+ aBlock[i] ^= ct[(block * bpb) + i];
+ }
+ }
+ ct = ct.concat(encrypt(aBlock, expandedKey));
+ }
+
+ return ct;
+}
+
+// rijndaelDecrypt(ciphertext, key, mode)
+// Decrypts the using the given key and mode. The parameter "ciphertext"
+// must be an array of bytes. The parameter "key" must be an array of key
+// bytes. If you have a hex string representing the ciphertext or key,
+// invoke hexToByteArray() on it to convert it to an array of bytes. The
+// parameter "mode" is a string, either "CBC" or "ECB".
+//
+// An array of bytes representing the plaintext is returned. To convert
+// this array to a hex string, invoke byteArrayToHex() on it. To convert it
+// to a string of characters, you can use byteArrayToString().
+
+function rijndaelDecrypt(ciphertext, key, mode) {
+ var expandedKey;
+ var bpb = blockSizeInBits / 8; // bytes per block
+ var pt = new Array(); // plaintext array
+ var aBlock; // a decrypted block
+ var block; // current block number
+
+ if (!ciphertext || !key || typeof ciphertext == "string")
+ return;
+ if (key.length*8 != keySizeInBits)
+ return;
+ if (!mode) {
+ mode = "ECB"; // assume ECB if mode omitted
+ }
+
+ expandedKey = keyExpansion(key);
+
+ // work backwards to accomodate CBC mode
+ for (block=(ciphertext.length / bpb)-1; block>0; block--) {
+ aBlock =
+ decrypt(ciphertext.slice(block*bpb,(block+1)*bpb), expandedKey);
+ if (mode == "CBC")
+ for (var i=0; i<bpb; i++)
+ pt[(block-1)*bpb + i] = aBlock[i] ^ ciphertext[(block-1)*bpb + i];
+ else
+ pt = aBlock.concat(pt);
+ }
+
+ // do last block if ECB (skips the IV in CBC)
+ if (mode == "ECB")
+ pt = decrypt(ciphertext.slice(0, bpb), expandedKey).concat(pt);
+
+ return pt;
+}
+
+//#############################################################################
+// Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (utf-8.js)
+//#############################################################################
+
+
+ /* Encoding and decoding of Unicode character strings as
+ UTF-8 byte streams. */
+
+ // UNICODE_TO_UTF8 -- Encode Unicode argument string as UTF-8 return value
+
+ function unicode_to_utf8(s) {
+ var utf8 = "";
+
+ for (var n = 0; n < s.length; n++) {
+ var c = s.charCodeAt(n);
+
+ if (c <= 0x7F) {
+ // 0x00 - 0x7F: Emit as single byte, unchanged
+ utf8 += String.fromCharCode(c);
+ } else if ((c >= 0x80) && (c <= 0x7FF)) {
+ // 0x80 - 0x7FF: Output as two byte code, 0xC0 in first byte
+ // 0x80 in second byte
+ utf8 += String.fromCharCode((c >> 6) | 0xC0);
+ utf8 += String.fromCharCode((c & 0x3F) | 0x80);
+ } else {
+ // 0x800 - 0xFFFF: Output as three bytes, 0xE0 in first byte
+ // 0x80 in second byte
+ // 0x80 in third byte
+ utf8 += String.fromCharCode((c >> 12) | 0xE0);
+ utf8 += String.fromCharCode(((c >> 6) & 0x3F) | 0x80);
+ utf8 += String.fromCharCode((c & 0x3F) | 0x80);
+ }
+ }
+ return utf8;
+ }
+
+ // UTF8_TO_UNICODE -- Decode UTF-8 argument into Unicode string return value
+
+ function utf8_to_unicode(utf8) {
+ var s = "", i = 0, b1, b2, b2;
+
+ while (i < utf8.length) {
+ b1 = utf8.charCodeAt(i);
+ if (b1 < 0x80) { // One byte code: 0x00 0x7F
+ s += String.fromCharCode(b1);
+ i++;
+ } else if((b1 >= 0xC0) && (b1 < 0xE0)) { // Two byte code: 0x80 - 0x7FF
+ b2 = utf8.charCodeAt(i + 1);
+ s += String.fromCharCode(((b1 & 0x1F) << 6) | (b2 & 0x3F));
+ i += 2;
+ } else { // Three byte code: 0x800 - 0xFFFF
+ b2 = utf8.charCodeAt(i + 1);
+ b3 = utf8.charCodeAt(i + 2);
+ s += String.fromCharCode(((b1 & 0xF) << 12) |
+ ((b2 & 0x3F) << 6) |
+ (b3 & 0x3F));
+ i += 3;
+ }
+ }
+ return s;
+ }
+
+ /* ENCODE_UTF8 -- Encode string as UTF8 only if it contains
+ a character of 0x9D (Unicode OPERATING
+ SYSTEM COMMAND) or a character greater
+ than 0xFF. This permits all strings
+ consisting exclusively of 8 bit
+ graphic characters to be encoded as
+ themselves. We choose 0x9D as the sentinel
+ character as opposed to one of the more
+ logical PRIVATE USE characters because 0x9D
+ is not overloaded by the regrettable
+ "Windows-1252" character set. Now such characters
+ don't belong in JavaScript strings, but you never
+ know what somebody is going to paste into a
+ text box, so this choice keeps Windows-encoded
+ strings from bloating to UTF-8 encoding. */
+
+ function encode_utf8(s) {
+ var i, necessary = false;
+
+ for (i = 0; i < s.length; i++) {
+ if ((s.charCodeAt(i) == 0x9D) ||
+ (s.charCodeAt(i) > 0xFF)) {
+ necessary = true;
+ break;
+ }
+ }
+ if (!necessary) {
+ return s;
+ }
+ return String.fromCharCode(0x9D) + unicode_to_utf8(s);
+ }
+
+ /* DECODE_UTF8 -- Decode a string encoded with encode_utf8
+ above. If the string begins with the
+ sentinel character 0x9D (OPERATING
+ SYSTEM COMMAND), then we decode the
+ balance as a UTF-8 stream. Otherwise,
+ the string is output unchanged, as
+ it's guaranteed to contain only 8 bit
+ characters excluding 0x9D. */
+
+ function decode_utf8(s) {
+ if ((s.length > 0) && (s.charCodeAt(0) == 0x9D)) {
+ return utf8_to_unicode(s.substring(1));
+ }
+ return s;
+ }
+
+
+//#############################################################################
+// Downloaded on April 26, 2006 from http://pajhome.org.uk/crypt/md5/md5.js
+//#############################################################################
+
+/*
+ * A JavaScript implementation of the RSA Data Security, Inc. MD5 Message
+ * Digest Algorithm, as defined in RFC 1321.
+ * Version 2.1 Copyright (C) Paul Johnston 1999 - 2002.
+ * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
+ * Distributed under the BSD License
+ * See http://pajhome.org.uk/crypt/md5 for more info.
+ */
+
+/*
+ * Configurable variables. You may need to tweak these to be compatible with
+ * the server-side, but the defaults work in most cases.
+ */
+var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
+var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
+var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */
+
+/*
+ * These are the functions you'll usually want to call
+ * They take string arguments and return either hex or base-64 encoded strings
+ */
+function hex_md5(s){ return binl2hex(core_md5(str2binl(s), s.length * chrsz));}
+function b64_md5(s){ return binl2b64(core_md5(str2binl(s), s.length * chrsz));}
+function str_md5(s){ return binl2str(core_md5(str2binl(s), s.length * chrsz));}
+function hex_hmac_md5(key, data) { return binl2hex(core_hmac_md5(key, data)); }
+function b64_hmac_md5(key, data) { return binl2b64(core_hmac_md5(key, data)); }
+function str_hmac_md5(key, data) { return binl2str(core_hmac_md5(key, data)); }
+
+/*
+ * Perform a simple self-test to see if the VM is working
+ */
+function md5_vm_test()
+{
+ return hex_md5("abc") == "900150983cd24fb0d6963f7d28e17f72";
+}
+
+/*
+ * Calculate the MD5 of an array of little-endian words, and a bit length
+ */
+function core_md5(x, len)
+{
+ /* append padding */
+ x[len >> 5] |= 0x80 << ((len) % 32);
+ x[(((len + 64) >>> 9) << 4) + 14] = len;
+
+ var a = 1732584193;
+ var b = -271733879;
+ var c = -1732584194;
+ var d = 271733878;
+
+ for(var i = 0; i < x.length; i += 16)
+ {
+ var olda = a;
+ var oldb = b;
+ var oldc = c;
+ var oldd = d;
+
+ a = md5_ff(a, b, c, d, x[i+ 0], 7 , -680876936);
+ d = md5_ff(d, a, b, c, x[i+ 1], 12, -389564586);
+ c = md5_ff(c, d, a, b, x[i+ 2], 17, 606105819);
+ b = md5_ff(b, c, d, a, x[i+ 3], 22, -1044525330);
+ a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897);
+ d = md5_ff(d, a, b, c, x[i+ 5], 12, 1200080426);
+ c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341);
+ b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983);
+ a = md5_ff(a, b, c, d, x[i+ 8], 7 , 1770035416);
+ d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417);
+ c = md5_ff(c, d, a, b, x[i+10], 17, -42063);
+ b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162);
+ a = md5_ff(a, b, c, d, x[i+12], 7 , 1804603682);
+ d = md5_ff(d, a, b, c, x[i+13], 12, -40341101);
+ c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290);
+ b = md5_ff(b, c, d, a, x[i+15], 22, 1236535329);
+
+ a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510);
+ d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632);
+ c = md5_gg(c, d, a, b, x[i+11], 14, 643717713);
+ b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302);
+ a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691);
+ d = md5_gg(d, a, b, c, x[i+10], 9 , 38016083);
+ c = md5_gg(c, d, a, b, x[i+15], 14, -660478335);
+ b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848);
+ a = md5_gg(a, b, c, d, x[i+ 9], 5 , 568446438);
+ d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690);
+ c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961);
+ b = md5_gg(b, c, d, a, x[i+ 8], 20, 1163531501);
+ a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467);
+ d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784);
+ c = md5_gg(c, d, a, b, x[i+ 7], 14, 1735328473);
+ b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734);
+
+ a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558);
+ d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463);
+ c = md5_hh(c, d, a, b, x[i+11], 16, 1839030562);
+ b = md5_hh(b, c, d, a, x[i+14], 23, -35309556);
+ a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060);
+ d = md5_hh(d, a, b, c, x[i+ 4], 11, 1272893353);
+ c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632);
+ b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640);
+ a = md5_hh(a, b, c, d, x[i+13], 4 , 681279174);
+ d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222);
+ c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979);
+ b = md5_hh(b, c, d, a, x[i+ 6], 23, 76029189);
+ a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487);
+ d = md5_hh(d, a, b, c, x[i+12], 11, -421815835);
+ c = md5_hh(c, d, a, b, x[i+15], 16, 530742520);
+ b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651);
+
+ a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844);
+ d = md5_ii(d, a, b, c, x[i+ 7], 10, 1126891415);
+ c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905);
+ b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055);
+ a = md5_ii(a, b, c, d, x[i+12], 6 , 1700485571);
+ d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606);
+ c = md5_ii(c, d, a, b, x[i+10], 15, -1051523);
+ b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799);
+ a = md5_ii(a, b, c, d, x[i+ 8], 6 , 1873313359);
+ d = md5_ii(d, a, b, c, x[i+15], 10, -30611744);
+ c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380);
+ b = md5_ii(b, c, d, a, x[i+13], 21, 1309151649);
+ a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070);
+ d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379);
+ c = md5_ii(c, d, a, b, x[i+ 2], 15, 718787259);
+ b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551);
+
+ a = safe_add(a, olda);
+ b = safe_add(b, oldb);
+ c = safe_add(c, oldc);
+ d = safe_add(d, oldd);
+ }
+ return Array(a, b, c, d);
+
+}
+
+/*
+ * These functions implement the four basic operations the algorithm uses.
+ */
+function md5_cmn(q, a, b, x, s, t)
+{
+ return safe_add(bit_rol(safe_add(safe_add(a, q), safe_add(x, t)), s),b);
+}
+function md5_ff(a, b, c, d, x, s, t)
+{
+ return md5_cmn((b & c) | ((~b) & d), a, b, x, s, t);
+}
+function md5_gg(a, b, c, d, x, s, t)
+{
+ return md5_cmn((b & d) | (c & (~d)), a, b, x, s, t);
+}
+function md5_hh(a, b, c, d, x, s, t)
+{
+ return md5_cmn(b ^ c ^ d, a, b, x, s, t);
+}
+function md5_ii(a, b, c, d, x, s, t)
+{
+ return md5_cmn(c ^ (b | (~d)), a, b, x, s, t);
+}
+
+/*
+ * Calculate the HMAC-MD5, of a key and some data
+ */
+function core_hmac_md5(key, data)
+{
+ var bkey = str2binl(key);
+ if(bkey.length > 16) bkey = core_md5(bkey, key.length * chrsz);
+
+ var ipad = Array(16), opad = Array(16);
+ for(var i = 0; i < 16; i++)
+ {
+ ipad[i] = bkey[i] ^ 0x36363636;
+ opad[i] = bkey[i] ^ 0x5C5C5C5C;
+ }
+
+ var hash = core_md5(ipad.concat(str2binl(data)), 512 + data.length * chrsz);
+ return core_md5(opad.concat(hash), 512 + 128);
+}
+
+/*
+ * Add integers, wrapping at 2^32. This uses 16-bit operations internally
+ * to work around bugs in some JS interpreters.
+ */
+function safe_add(x, y)
+{
+ var lsw = (x & 0xFFFF) + (y & 0xFFFF);
+ var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
+ return (msw << 16) | (lsw & 0xFFFF);
+}
+
+/*
+ * Bitwise rotate a 32-bit number to the left.
+ */
+function bit_rol(num, cnt)
+{
+ return (num << cnt) | (num >>> (32 - cnt));
+}
+
+/*
+ * Convert a string to an array of little-endian words
+ * If chrsz is ASCII, characters >255 have their hi-byte silently ignored.
+ */
+function str2binl(str)
+{
+ var bin = Array();
+ var mask = (1 << chrsz) - 1;
+ for(var i = 0; i < str.length * chrsz; i += chrsz)
+ bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (i%32);
+ return bin;
+}
+
+/*
+ * Convert an array of little-endian words to a string
+ */
+function binl2str(bin)
+{
+ var str = "";
+ var mask = (1 << chrsz) - 1;
+ for(var i = 0; i < bin.length * 32; i += chrsz)
+ str += String.fromCharCode((bin[i>>5] >>> (i % 32)) & mask);
+ return str;
+}
+
+/*
+ * Convert an array of little-endian words to a hex string.
+ */
+function binl2hex(binarray)
+{
+ var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
+ var str = "";
+ for(var i = 0; i < binarray.length * 4; i++)
+ {
+ str += hex_tab.charAt((binarray[i>>2] >> ((i%4)*8+4)) & 0xF) +
+ hex_tab.charAt((binarray[i>>2] >> ((i%4)*8 )) & 0xF);
+ }
+ return str;
+}
+
+/*
+ * Convert an array of little-endian words to a base-64 string
+ */
+function binl2b64(binarray)
+{
+ var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
+ var str = "";
+ for(var i = 0; i < binarray.length * 4; i += 3)
+ {
+ var triplet = (((binarray[i >> 2] >> 8 * ( i %4)) & 0xFF) << 16)
+ | (((binarray[i+1 >> 2] >> 8 * ((i+1)%4)) & 0xFF) << 8 )
+ | ((binarray[i+2 >> 2] >> 8 * ((i+2)%4)) & 0xFF);
+ for(var j = 0; j < 4; j++)
+ {
+ if(i * 8 + j * 6 > binarray.length * 32) str += b64pad;
+ else str += tab.charAt((triplet >> 6*(3-j)) & 0x3F);
+ }
+ }
+ return str;
+}
+
+
+//#############################################################################
+//#############################################################################
+//#############################################################################
+
+
+
+MochiKit.Base.update(Clipperz.Crypto.Base, {
+
+ '__repr__': function () {
+ return "[" + this.NAME + " " + this.VERSION + "]";
+ },
+
+ 'toString': function () {
+ return this.__repr__();
+ },
+
+ //-----------------------------------------------------------------------------
+
+ 'encryptUsingSecretKey': function (aKey, aMessage) {
+//Clipperz.Profile.start("Clipperz.Crypto.Base.encryptUsingSecretKey");
+ var result;
+ var plaintext;
+ var header;
+ var key;
+
+ key = hexToByteArray(Clipperz.Crypto.Base.computeHashValue(aKey));
+
+ addEntropyTime();
+ prng = new AESprng(keyFromEntropy());
+
+ plaintext = encode_utf8(aMessage);
+
+ header = Clipperz.Base.byteArrayToString(hexToByteArray(Clipperz.Crypto.Base.computeMD5HashValue(plaintext)));
+
+ // Add message length in bytes to header
+ i = plaintext.length;
+ header += String.fromCharCode(i >>> 24);
+ header += String.fromCharCode(i >>> 16);
+ header += String.fromCharCode(i >>> 8);
+ header += String.fromCharCode(i & 0xFF);
+
+ // The format of the actual message passed to rijndaelEncrypt
+ // is:
+ //
+ // Bytes Content
+ // 0-15 MD5 signature of plaintext
+ // 16-19 Length of plaintext, big-endian order
+ // 20-end Plaintext
+ //
+ // Note that this message will be padded with zero bytes
+ // to an integral number of AES blocks (blockSizeInBits / 8).
+ // This does not include the initial vector for CBC
+ // encryption, which is added internally by rijndaelEncrypt.
+ result = byteArrayToHex(rijndaelEncrypt(header + plaintext, key, "CBC"));
+
+ delete prng;
+
+//Clipperz.Profile.stop("Clipperz.Crypto.Base.encryptUsingSecretKey");
+ return result;
+ },
+
+ //.............................................................................
+
+ 'decryptUsingSecretKey': function (aKey, aMessage) {
+//Clipperz.Profile.start("Clipperz.Crypto.Base.decryptUsingSecretKey");
+ var key;
+ var decryptedText;
+ var textLength;
+ var header;
+ var headerDigest;
+ var plaintext;
+ var i;
+
+ key = hexToByteArray(Clipperz.Crypto.Base.computeHashValue(aKey));
+
+ decryptedText = rijndaelDecrypt(hexToByteArray(aMessage), key, "CBC");
+
+ header = decryptedText.slice(0, 20);
+ decryptedText = decryptedText.slice(20);
+
+ headerDigest = byteArrayToHex(header.slice(0,16));
+ textLength = (header[16] << 24) | (header[17] << 16) | (header[18] << 8) | header[19];
+
+ if ((textLength < 0) || (textLength > decryptedText.length)) {
+// jslog.warning("Message (length " + decryptedText.length + ") truncated. " + textLength + " characters expected.");
+ // Try to sauve qui peut by setting length to entire message
+ textLength = decryptedText.length;
+ }
+
+ plainText = "";
+
+ for (i=0; i<textLength; i++) {
+ plainText += String.fromCharCode(decryptedText[i]);
+ }
+
+ if (Clipperz.Crypto.Base.computeMD5HashValue(plainText) != headerDigest) {
+// jslog.warning("Message corrupted. Checksum of decrypted message does not match.");
+ throw Clipperz.Crypto.Base.exception.CorruptedMessage;
+// throw new Error("Message corrupted. Checksum of decrypted message does not match. Parsed result: " + decode_utf8(plainText));
+ }
+
+ // That's it; plug plaintext into the result field
+
+ result = decode_utf8(plainText);
+
+//Clipperz.Profile.stop("Clipperz.Crypto.Base.decryptUsingSecretKey");
+ return result;
+ },
+
+ //-----------------------------------------------------------------------------
+
+ 'computeHashValue': function (aMessage) {
+//Clipperz.Profile.start("Clipperz.Crypto.Base.computeHashValue");
+ var result;
+
+ result = hex_sha256(aMessage);
+//Clipperz.Profile.stop("Clipperz.Crypto.Base.computeHashValue");
+
+ return result;
+ },
+
+ //.........................................................................
+
+ 'computeMD5HashValue': function (aMessage) {
+ var result;
+//Clipperz.Profile.start("Clipperz.Crypto.Base.computeMD5HashValue");
+ result = hex_md5(aMessage);
+//Clipperz.Profile.stop("Clipperz.Crypto.Base.computeMD5HashValue");
+
+ return result;
+ },
+
+ //-----------------------------------------------------------------------------
+
+ 'generateRandomSeed': function () {
+//Clipperz.Profile.start("Clipperz.Crypto.Base.generateRandomSeed");
+ var result;
+ var seed;
+ var prng;
+ var charA;
+ var i;
+
+ addEntropyTime();
+
+ seed = keyFromEntropy();
+ prng = new AESprng(seed);
+
+ result = "";
+ charA = ("A").charCodeAt(0);
+
+ for (i = 0; i < 64; i++) {
+ result += String.fromCharCode(charA + prng.nextInt(25));
+ }
+
+ delete prng;
+
+ result = Clipperz.Crypto.Base.computeHashValue(result);
+
+//Clipperz.Profile.stop("Clipperz.Crypto.Base.generateRandomSeed");
+ return result;
+ },
+
+ //-----------------------------------------------------------------------------
+
+ 'exception': {
+ 'CorruptedMessage': new MochiKit.Base.NamedError("Clipperz.Crypto.Base.exception.CorruptedMessage")
+ },
+
+ //.........................................................................
+ __syntaxFix__: "syntax fix"
+});
+