summaryrefslogtreecommitdiff
path: root/frontend/delta/js/Clipperz/Crypto/Base.js
blob: 9acfc49a5fde40ad59466aca8784de1cbff6392e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
/*

Copyright 2008-2013 Clipperz Srl

This file is part of Clipperz, the online password manager.
For further information about its features and functionalities please
refer to http://www.clipperz.com.

* Clipperz is free software: you can redistribute it and/or modify it
  under the terms of the GNU Affero General Public License as published
  by the Free Software Foundation, either version 3 of the License, or 
  (at your option) any later version.

* Clipperz is distributed in the hope that it will be useful, but 
  WITHOUT ANY WARRANTY; without even the implied warranty of 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  See the GNU Affero General Public License for more details.

* You should have received a copy of the GNU Affero General Public
  License along with Clipperz. If not, see http://www.gnu.org/licenses/.

*/

try { if (typeof(Clipperz.Base) == 'undefined') { throw ""; }} catch (e) {
	throw "Clipperz.Crypto.Base depends on Clipperz.Base!";
}  

if (typeof(Clipperz.Crypto) == 'undefined') { Clipperz.Crypto = {}; }
if (typeof(Clipperz.Crypto.Base) == 'undefined') { Clipperz.Crypto.Base = {}; }

Clipperz.Crypto.Base.VERSION = "0.1";
Clipperz.Crypto.Base.NAME = "Clipperz.Crypto.Base";

//#############################################################################
//	Downloaded on March 30, 2006 from http://anmar.eu.org/projects/jssha2/files/jssha2-0.3.zip (jsSha2/sha256.js)
//#############################################################################

/* A JavaScript implementation of the Secure Hash Algorithm, SHA-256
 * Version 0.3 Copyright Angel Marin 2003-2004 - http://anmar.eu.org/
 * Distributed under the BSD License
 * Some bits taken from Paul Johnston's SHA-1 implementation
 */
var chrsz = 8;  /* bits per input character. 8 - ASCII; 16 - Unicode  */
function safe_add (x, y) {
  var lsw = (x & 0xFFFF) + (y & 0xFFFF);
  var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
  return (msw << 16) | (lsw & 0xFFFF);
}
function S (X, n) {return ( X >>> n ) | (X << (32 - n));}
function R (X, n) {return ( X >>> n );}
function Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}
function Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}
function Sigma0256(x) {return (S(x, 2) ^ S(x, 13) ^ S(x, 22));}
function Sigma1256(x) {return (S(x, 6) ^ S(x, 11) ^ S(x, 25));}
function Gamma0256(x) {return (S(x, 7) ^ S(x, 18) ^ R(x, 3));}
function Gamma1256(x) {return (S(x, 17) ^ S(x, 19) ^ R(x, 10));}
function core_sha256 (m, l) {
    var K = new Array(0x428A2F98,0x71374491,0xB5C0FBCF,0xE9B5DBA5,0x3956C25B,0x59F111F1,0x923F82A4,0xAB1C5ED5,0xD807AA98,0x12835B01,0x243185BE,0x550C7DC3,0x72BE5D74,0x80DEB1FE,0x9BDC06A7,0xC19BF174,0xE49B69C1,0xEFBE4786,0xFC19DC6,0x240CA1CC,0x2DE92C6F,0x4A7484AA,0x5CB0A9DC,0x76F988DA,0x983E5152,0xA831C66D,0xB00327C8,0xBF597FC7,0xC6E00BF3,0xD5A79147,0x6CA6351,0x14292967,0x27B70A85,0x2E1B2138,0x4D2C6DFC,0x53380D13,0x650A7354,0x766A0ABB,0x81C2C92E,0x92722C85,0xA2BFE8A1,0xA81A664B,0xC24B8B70,0xC76C51A3,0xD192E819,0xD6990624,0xF40E3585,0x106AA070,0x19A4C116,0x1E376C08,0x2748774C,0x34B0BCB5,0x391C0CB3,0x4ED8AA4A,0x5B9CCA4F,0x682E6FF3,0x748F82EE,0x78A5636F,0x84C87814,0x8CC70208,0x90BEFFFA,0xA4506CEB,0xBEF9A3F7,0xC67178F2);
    var HASH = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19);
    var W = new Array(64);
    var a, b, c, d, e, f, g, h, i, j;
    var T1, T2;
    /* append padding */
    m[l >> 5] |= 0x80 << (24 - l % 32);
    m[((l + 64 >> 9) << 4) + 15] = l;
    for ( var i = 0; i<m.length; i+=16 ) {
        a = HASH[0]; b = HASH[1]; c = HASH[2]; d = HASH[3]; e = HASH[4]; f = HASH[5]; g = HASH[6]; h = HASH[7];
        for ( var j = 0; j<64; j++) {
            if (j < 16) W[j] = m[j + i];
            else W[j] = safe_add(safe_add(safe_add(Gamma1256(W[j - 2]), W[j - 7]), Gamma0256(W[j - 15])), W[j - 16]);
            T1 = safe_add(safe_add(safe_add(safe_add(h, Sigma1256(e)), Ch(e, f, g)), K[j]), W[j]);
            T2 = safe_add(Sigma0256(a), Maj(a, b, c));
            h = g; g = f; f = e; e = safe_add(d, T1); d = c; c = b; b = a; a = safe_add(T1, T2);
        }
        HASH[0] = safe_add(a, HASH[0]); HASH[1] = safe_add(b, HASH[1]); HASH[2] = safe_add(c, HASH[2]); HASH[3] = safe_add(d, HASH[3]); HASH[4] = safe_add(e, HASH[4]); HASH[5] = safe_add(f, HASH[5]); HASH[6] = safe_add(g, HASH[6]); HASH[7] = safe_add(h, HASH[7]);
    }
    return HASH;
}
function str2binb (str) {
  var bin = Array();
  var mask = (1 << chrsz) - 1;
  for(var i = 0; i < str.length * chrsz; i += chrsz)
    bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i%32);
  return bin;
}
function binb2hex (binarray) {
  var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
  var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
  var str = "";
  for (var i = 0; i < binarray.length * 4; i++) {
    str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) + hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8  )) & 0xF);
  }
  return str;
}
function hex_sha256(s){return binb2hex(core_sha256(str2binb(s),s.length * chrsz));}



//#############################################################################
//	Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (entropy.js)
//#############################################################################

    //  Entropy collection utilities

    /*	Start by declaring static storage and initialise
    	the entropy vector from the time we come through
    	here. */
	
    var entropyData = new Array();   	    // Collected entropy data
    var edlen = 0;  	    	    	    // Keyboard array data length
 
    addEntropyTime();	    	    	    // Start entropy collection with page load time
    ce();   	    	    	    	    // Roll milliseconds into initial entropy

    //	Add a byte to the entropy vector
    
    function addEntropyByte(b) {
    	entropyData[edlen++] = b;
    }
            
    /*	Capture entropy.  When the user presses a key or performs
	various other events for which we can request
	notification, add the time in 255ths of a second to the
	entropyData array.  The name of the function is short
	so it doesn't bloat the form object declarations in
	which it appears in various "onXXX" events.  */
    
    function ce() {
    	addEntropyByte(Math.floor((((new Date).getMilliseconds()) * 255) / 999));
    }
    
    //	Add a 32 bit quantity to the entropy vector
    
    function addEntropy32(w) {
    	var i;
	
	for (i = 0; i < 4; i++) {
	    addEntropyByte(w & 0xFF);
	    w >>= 8;
    	}
    }
    
    /*	Add the current time and date (milliseconds since the epoch,
    	truncated to 32 bits) to the entropy vector.  */
	
    function addEntropyTime() {
    	addEntropy32((new Date()).getTime());
    }

    /*  Start collection of entropy from mouse movements. The
	argument specifies the  number of entropy items to be
	obtained from mouse motion, after which mouse motion
	will be ignored.  Note that you can re-enable mouse
	motion collection at any time if not already underway.  */
	
    var mouseMotionCollect = 0;
    var oldMoveHandler;     	    // For saving and restoring mouse move handler in IE4
	
    function mouseMotionEntropy(maxsamp) {
    	if (mouseMotionCollect <= 0) {
	    mouseMotionCollect = maxsamp;
    	    if ((document.implementation.hasFeature("Events", "2.0")) &&
	    	document.addEventListener) {
    	    	//  Browser supports Document Object Model (DOM) 2 events
		document.addEventListener("mousemove", mouseMoveEntropy, false);
	    } else {
		if (document.attachEvent) {
	    	    //  Internet Explorer 5 and above event model
		    document.attachEvent("onmousemove", mouseMoveEntropy);
		} else {
		    //	Internet Explorer 4 event model
	    	    oldMoveHandler = document.onmousemove;
		    document.onmousemove = mouseMoveEntropy;
		}
	    }
//dump("Mouse enable", mouseMotionCollect);
	}
    }
    
    /*	Collect entropy from mouse motion events.  Note that
    	this is craftily coded to work with either DOM2 or Internet
	Explorer style events.  Note that we don't use every successive
	mouse movement event.  Instead, we XOR the three bytes collected
	from the mouse and use that to determine how many subsequent
	mouse movements we ignore before capturing the next one.  */
	
    var mouseEntropyTime = 0;	    // Delay counter for mouse entropy collection
	
    function mouseMoveEntropy(e) {
    	if (!e) {
	    e = window.event;	    // Internet Explorer event model
	}
	if (mouseMotionCollect > 0) {
	    if (mouseEntropyTime-- <= 0) {
	    	addEntropyByte(e.screenX & 0xFF);
	    	addEntropyByte(e.screenY & 0xFF);
	    	ce();
	    	mouseMotionCollect--;
	    	mouseEntropyTime = (entropyData[edlen - 3] ^ entropyData[edlen - 2] ^
		    	    	    entropyData[edlen - 1]) % 19;
//dump("Mouse Move", byteArrayToHex(entropyData.slice(-3)));
    	    }
	    if (mouseMotionCollect <= 0) {
	    	if (document.removeEventListener) {
		    document.removeEventListener("mousemove", mouseMoveEntropy, false);
		} else if (document.detachEvent) {
		    document.detachEvent("onmousemove", mouseMoveEntropy);
		} else {
		    document.onmousemove = oldMoveHandler;
		}
//dump("Spung!", 0);
	    }
	}
    }    
    
    /*	Compute a 32 byte key value from the entropy vector.
    	We compute the value by taking the MD5 sum of the even
	and odd bytes respectively of the entropy vector, then
	concatenating the two MD5 sums.  */
    
    function keyFromEntropy() {
	var i, k = new Array(32);
	
	if (edlen == 0) {
	    alert("Blooie!  Entropy vector void at call to keyFromEntropy.");
	}
//dump("Entropy bytes", edlen);

	md5_init();
	for (i = 0; i < edlen; i += 2) {
	    md5_update(entropyData[i]);
	}
	md5_finish();
    	for (i = 0; i < 16; i++) {
	    k[i] = digestBits[i];
	}

	md5_init();
	for (i = 1; i < edlen; i += 2) {
	    md5_update(entropyData[i]);
	}
	md5_finish();
    	for (i = 0; i < 16; i++) {
	    k[i + 16] = digestBits[i];
	}
	
//dump("keyFromEntropy", byteArrayToHex(k));
	return k;
    }

//#############################################################################
//	Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (aesprng.js)
//#############################################################################


    //  AES based pseudorandom number generator

    /*  Constructor.  Called with an array of 32 byte (0-255) values
	containing the initial seed.  */

    function AESprng(seed) {
	this.key = new Array();
	this.key = seed;
	this.itext = hexToByteArray("9F489613248148F9C27945C6AE62EECA3E3367BB14064E4E6DC67A9F28AB3BD1");
	this.nbytes = 0;    	    // Bytes left in buffer
	
	this.next = AESprng_next;
	this.nextbits = AESprng_nextbits;
	this.nextInt = AESprng_nextInt;
	this.round = AESprng_round;
	
	/*  Encrypt the initial text with the seed key
	    three times, feeding the output of the encryption
	    back into the key for the next round.  */
	
	bsb = blockSizeInBits;
	blockSizeInBits = 256;    
	var i, ct;
    	for (i = 0; i < 3; i++) {
	    this.key = rijndaelEncrypt(this.itext, this.key, "ECB");
	}
	
	/*  Now make between one and four additional
	    key-feedback rounds, with the number determined
	    by bits from the result of the first three
	    rounds.  */
	
	var n = 1 + (this.key[3] & 2) + (this.key[9] & 1);    
    	for (i = 0; i < n; i++) {
	    this.key = rijndaelEncrypt(this.itext, this.key, "ECB");
	}
    	blockSizeInBits = bsb;
    }
    
    function AESprng_round() {
	bsb = blockSizeInBits;
	blockSizeInBits = 256;    
    	this.key = rijndaelEncrypt(this.itext, this.key, "ECB");
	this.nbytes = 32;
    	blockSizeInBits = bsb;
    }
    
    //	Return next byte from the generator

    function AESprng_next() {
    	if (this.nbytes <= 0) {
	    this.round();
	}
	return(this.key[--this.nbytes]);
    }
    
    //	Return n bit integer value (up to maximum integer size)
    
    function AESprng_nextbits(n) {
    	var i, w = 0, nbytes = Math.floor((n + 7) / 8);

	for (i = 0; i < nbytes; i++) {
	    w = (w << 8) | this.next();
	}
	return w & ((1 << n) - 1);
    }

    //  Return integer between 0 and n inclusive
    
    function AESprng_nextInt(n) {
    	var p = 1, nb = 0;
	
	//  Determine smallest p,  2^p > n
	//  nb = log_2 p
	
	while (n >= p) {
	    p <<= 1;
	    nb++;
	}
	p--;
	
	/*  Generate values from 0 through n by first generating
	    values v from 0 to (2^p)-1, then discarding any results v > n.
	    For the rationale behind this (and why taking
	    values mod (n + 1) is biased toward smaller values, see
	    Ferguson and Schneier, "Practical Cryptography",
	    ISBN 0-471-22357-3, section 10.8).  */

	while (true) {
    	    var v = this.nextbits(nb) & p;
	    
	    if (v <= n) {
	    	return v;
	    }
	}
    }

//#############################################################################
//	Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (md5.js)
//#############################################################################

/*
 *  md5.jvs 1.0b 27/06/96
 *
 * Javascript implementation of the RSA Data Security, Inc. MD5
 * Message-Digest Algorithm.
 *
 * Copyright (c) 1996 Henri Torgemane. All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this software
 * and its documentation for any purposes and without
 * fee is hereby granted provided that this copyright notice
 * appears in all copies. 
 *
 * Of course, this soft is provided "as is" without express or implied
 * warranty of any kind.

    This version contains some trivial reformatting modifications
    by John Walker.

 */

function array(n) {
    for (i = 0; i < n; i++) {
        this[i] = 0;
    }
    this.length = n;
}

/* Some basic logical functions had to be rewritten because of a bug in
 * Javascript.. Just try to compute 0xffffffff >> 4 with it..
 * Of course, these functions are slower than the original would be, but
 * at least, they work!
 */

function integer(n) {
    return n % (0xffffffff + 1);
}

function shr(a, b) {
    a = integer(a);
    b = integer(b);
    if (a - 0x80000000 >= 0) {
        a = a % 0x80000000;
        a >>= b;
        a += 0x40000000 >> (b - 1);
    } else {
        a >>= b;
    }
    return a;
}

function shl1(a) {
    a = a % 0x80000000;
    if (a & 0x40000000 == 0x40000000) {
        a -= 0x40000000;  
        a *= 2;
        a += 0x80000000;
    } else {
        a *= 2;
    }
    return a;
}

function shl(a, b) {
    a = integer(a);
    b = integer(b);
    for (var i = 0; i < b; i++) {
        a = shl1(a);
    }
    return a;
}

function and(a, b) {
    a = integer(a);
    b = integer(b);
    var t1 = a - 0x80000000;
    var t2 = b - 0x80000000;
    if (t1 >= 0) {
        if (t2 >= 0) {
            return ((t1 & t2) + 0x80000000);
        } else {
            return (t1 & b);
        }
    } else {
        if (t2 >= 0) {
            return (a & t2);
        } else {
            return (a & b);  
        }
    }
}

function or(a, b) {
    a = integer(a);
    b = integer(b);
    var t1 = a - 0x80000000;
    var t2 = b - 0x80000000;
    if (t1 >= 0) {
        if (t2 >= 0) {
            return ((t1 | t2) + 0x80000000);
        } else {
            return ((t1 | b) + 0x80000000);
        }
    } else {
        if (t2 >= 0) {
            return ((a | t2) + 0x80000000);
        } else {
            return (a | b);  
        }
    }
}

function xor(a, b) {
    a = integer(a);
    b = integer(b);
    var t1 = a - 0x80000000;
    var t2 = b - 0x80000000;
    if (t1 >= 0) {
        if (t2 >= 0) {
            return (t1 ^ t2);
        } else {
            return ((t1 ^ b) + 0x80000000);
        }
    } else {
        if (t2 >= 0) {
            return ((a ^ t2) + 0x80000000);
        } else {
            return (a ^ b);  
        }
    }
}

function not(a) {
    a = integer(a);
    return 0xffffffff - a;
}

/* Here begin the real algorithm */

var state = new array(4); 
var count = new array(2);
    count[0] = 0;
    count[1] = 0;                     
var buffer = new array(64); 
var transformBuffer = new array(16); 
var digestBits = new array(16);

var S11 = 7;
var S12 = 12;
var S13 = 17;
var S14 = 22;
var S21 = 5;
var S22 = 9;
var S23 = 14;
var S24 = 20;
var S31 = 4;
var S32 = 11;
var S33 = 16;
var S34 = 23;
var S41 = 6;
var S42 = 10;
var S43 = 15;
var S44 = 21;

function F(x, y, z) {
    return or(and(x, y), and(not(x), z));
}

function G(x, y, z) {
    return or(and(x, z), and(y, not(z)));
}

function H(x, y, z) {
    return xor(xor(x, y), z);
}

function I(x, y, z) {
    return xor(y ,or(x , not(z)));
}

function rotateLeft(a, n) {
    return or(shl(a, n), (shr(a, (32 - n))));
}

function FF(a, b, c, d, x, s, ac) {
    a = a + F(b, c, d) + x + ac;
    a = rotateLeft(a, s);
    a = a + b;
    return a;
}

function GG(a, b, c, d, x, s, ac) {
    a = a + G(b, c, d) + x + ac;
    a = rotateLeft(a, s);
    a = a + b;
    return a;
}

function HH(a, b, c, d, x, s, ac) {
    a = a + H(b, c, d) + x + ac;
    a = rotateLeft(a, s);
    a = a + b;
    return a;
}

function II(a, b, c, d, x, s, ac) {
    a = a + I(b, c, d) + x + ac;
    a = rotateLeft(a, s);
    a = a + b;
    return a;
}

function transform(buf, offset) { 
    var a = 0, b = 0, c = 0, d = 0; 
    var x = transformBuffer;
    
    a = state[0];
    b = state[1];
    c = state[2];
    d = state[3];
    
    for (i = 0; i < 16; i++) {
        x[i] = and(buf[i * 4 + offset], 0xFF);
        for (j = 1; j < 4; j++) {
            x[i] += shl(and(buf[i * 4 + j + offset] ,0xFF), j * 8);
        }
    }

    /* Round 1 */
    a = FF( a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
    d = FF( d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
    c = FF( c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
    b = FF( b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
    a = FF( a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
    d = FF( d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
    c = FF( c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
    b = FF( b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
    a = FF( a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
    d = FF( d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
    c = FF( c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
    b = FF( b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
    a = FF( a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
    d = FF( d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
    c = FF( c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
    b = FF( b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

    /* Round 2 */
    a = GG( a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
    d = GG( d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
    c = GG( c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
    b = GG( b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
    a = GG( a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
    d = GG( d, a, b, c, x[10], S22,  0x2441453); /* 22 */
    c = GG( c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
    b = GG( b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
    a = GG( a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
    d = GG( d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
    c = GG( c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
    b = GG( b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
    a = GG( a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
    d = GG( d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
    c = GG( c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
    b = GG( b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

    /* Round 3 */
    a = HH( a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
    d = HH( d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
    c = HH( c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
    b = HH( b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
    a = HH( a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
    d = HH( d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
    c = HH( c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
    b = HH( b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
    a = HH( a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
    d = HH( d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
    c = HH( c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
    b = HH( b, c, d, a, x[ 6], S34,  0x4881d05); /* 44 */
    a = HH( a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
    d = HH( d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
    c = HH( c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
    b = HH( b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */

    /* Round 4 */
    a = II( a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
    d = II( d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
    c = II( c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
    b = II( b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
    a = II( a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
    d = II( d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
    c = II( c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
    b = II( b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
    a = II( a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
    d = II( d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
    c = II( c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
    b = II( b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
    a = II( a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
    d = II( d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
    c = II( c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
    b = II( b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */

    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;

}

function md5_init() {
    count[0] = count[1] = 0;
    state[0] = 0x67452301;
    state[1] = 0xefcdab89;
    state[2] = 0x98badcfe;
    state[3] = 0x10325476;
    for (i = 0; i < digestBits.length; i++) {
        digestBits[i] = 0;
    }
}

function md5_update(b) { 
    var index, i;
    
    index = and(shr(count[0],3) , 0x3F);
    if (count[0] < 0xFFFFFFFF - 7) {
      count[0] += 8;
    } else {
      count[1]++;
      count[0] -= 0xFFFFFFFF + 1;
      count[0] += 8;
    }
    buffer[index] = and(b, 0xff);
    if (index  >= 63) {
        transform(buffer, 0);
    }
}

function md5_finish() {
    var bits = new array(8);
    var padding; 
    var i = 0, index = 0, padLen = 0;

    for (i = 0; i < 4; i++) {
        bits[i] = and(shr(count[0], (i * 8)), 0xFF);
    }
    for (i = 0; i < 4; i++) {
        bits[i + 4] = and(shr(count[1], (i * 8)), 0xFF);
    }
    index = and(shr(count[0], 3), 0x3F);
    padLen = (index < 56) ? (56 - index) : (120 - index);
    padding = new array(64); 
    padding[0] = 0x80;
    for (i = 0; i < padLen; i++) {
      md5_update(padding[i]);
    }
    for (i = 0; i < 8; i++) {
      md5_update(bits[i]);
    }

    for (i = 0; i < 4; i++) {
        for (j = 0; j < 4; j++) {
            digestBits[i * 4 + j] = and(shr(state[i], (j * 8)) , 0xFF);
        }
    } 
}

/* End of the MD5 algorithm */

//#############################################################################
//	Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (aes.js)
//#############################################################################


/* rijndael.js      Rijndael Reference Implementation

    This is a modified version of the software described below,
    produced in September 2003 by John Walker for use in the
    JavsScrypt browser-based encryption package.  The principal
    changes are replacing the original getRandomBytes function with
    one which calls our pseudorandom generator (which must
    be instantiated and seeded before the first call on getRandomBytes),
    and changing keySizeInBits to 256.  Some code not required by the
    JavsScrypt application has been commented out.  Please see
    http://www.fourmilab.ch/javascrypt/ for further information on
    JavaScrypt.
    
    The following is the original copyright and application
    information.

   Copyright (c) 2001 Fritz Schneider
 
 This software is provided as-is, without express or implied warranty.  
 Permission to use, copy, modify, distribute or sell this software, with or
 without fee, for any purpose and by any individual or organization, is hereby
 granted, provided that the above copyright notice and this paragraph appear 
 in all copies. Distribution as a part of an application or binary must
 include the above copyright notice in the documentation and/or other materials
 provided with the application or distribution.

   As the above disclaimer notes, you are free to use this code however you
   want. However, I would request that you send me an email 
   (fritz /at/ cs /dot/ ucsd /dot/ edu) to say hi if you find this code useful
   or instructional. Seeing that people are using the code acts as 
   encouragement for me to continue development. If you *really* want to thank
   me you can buy the book I wrote with Thomas Powell, _JavaScript:
   _The_Complete_Reference_ :)

   This code is an UNOPTIMIZED REFERENCE implementation of Rijndael. 
   If there is sufficient interest I can write an optimized (word-based, 
   table-driven) version, although you might want to consider using a 
   compiled language if speed is critical to your application. As it stands,
   one run of the monte carlo test (10,000 encryptions) can take up to 
   several minutes, depending upon your processor. You shouldn't expect more
   than a few kilobytes per second in throughput.

   Also note that there is very little error checking in these functions. 
   Doing proper error checking is always a good idea, but the ideal 
   implementation (using the instanceof operator and exceptions) requires
   IE5+/NS6+, and I've chosen to implement this code so that it is compatible
   with IE4/NS4. 

   And finally, because JavaScript doesn't have an explicit byte/char data 
   type (although JavaScript 2.0 most likely will), when I refer to "byte" 
   in this code I generally mean "32 bit integer with value in the interval 
   [0,255]" which I treat as a byte.

   See http://www-cse.ucsd.edu/~fritz/rijndael.html for more documentation
   of the (very simple) API provided by this code.

                                               Fritz Schneider
                                               fritz at cs.ucsd.edu
 
*/


// Rijndael parameters --  Valid values are 128, 192, or 256

var keySizeInBits = 256;
var blockSizeInBits = 128;

//
// Note: in the following code the two dimensional arrays are indexed as
//       you would probably expect, as array[row][column]. The state arrays
//       are 2d arrays of the form state[4][Nb].


// The number of rounds for the cipher, indexed by [Nk][Nb]
var roundsArray = [ ,,,,[,,,,10,, 12,, 14],, 
                        [,,,,12,, 12,, 14],, 
                        [,,,,14,, 14,, 14] ];

// The number of bytes to shift by in shiftRow, indexed by [Nb][row]
var shiftOffsets = [ ,,,,[,1, 2, 3],,[,1, 2, 3],,[,1, 3, 4] ];

// The round constants used in subkey expansion
var Rcon = [ 
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 
0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 
0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 ];

// Precomputed lookup table for the SBox
var SBox = [
 99, 124, 119, 123, 242, 107, 111, 197,  48,   1, 103,  43, 254, 215, 171, 
118, 202, 130, 201, 125, 250,  89,  71, 240, 173, 212, 162, 175, 156, 164, 
114, 192, 183, 253, 147,  38,  54,  63, 247, 204,  52, 165, 229, 241, 113, 
216,  49,  21,   4, 199,  35, 195,  24, 150,   5, 154,   7,  18, 128, 226, 
235,  39, 178, 117,   9, 131,  44,  26,  27, 110,  90, 160,  82,  59, 214, 
179,  41, 227,  47, 132,  83, 209,   0, 237,  32, 252, 177,  91, 106, 203, 
190,  57,  74,  76,  88, 207, 208, 239, 170, 251,  67,  77,  51, 133,  69, 
249,   2, 127,  80,  60, 159, 168,  81, 163,  64, 143, 146, 157,  56, 245, 
188, 182, 218,  33,  16, 255, 243, 210, 205,  12,  19, 236,  95, 151,  68,  
23,  196, 167, 126,  61, 100,  93,  25, 115,  96, 129,  79, 220,  34,  42, 
144, 136,  70, 238, 184,  20, 222,  94,  11, 219, 224,  50,  58,  10,  73,
  6,  36,  92, 194, 211, 172,  98, 145, 149, 228, 121, 231, 200,  55, 109, 
141, 213,  78, 169, 108,  86, 244, 234, 101, 122, 174,   8, 186, 120,  37,  
 46,  28, 166, 180, 198, 232, 221, 116,  31,  75, 189, 139, 138, 112,  62, 
181, 102,  72,   3, 246,  14,  97,  53,  87, 185, 134, 193,  29, 158, 225,
248, 152,  17, 105, 217, 142, 148, 155,  30, 135, 233, 206,  85,  40, 223,
140, 161, 137,  13, 191, 230,  66, 104,  65, 153,  45,  15, 176,  84, 187,  
 22 ];

// Precomputed lookup table for the inverse SBox
var SBoxInverse = [
 82,   9, 106, 213,  48,  54, 165,  56, 191,  64, 163, 158, 129, 243, 215, 
251, 124, 227,  57, 130, 155,  47, 255, 135,  52, 142,  67,  68, 196, 222, 
233, 203,  84, 123, 148,  50, 166, 194,  35,  61, 238,  76, 149,  11,  66, 
250, 195,  78,   8,  46, 161, 102,  40, 217,  36, 178, 118,  91, 162,  73, 
109, 139, 209,  37, 114, 248, 246, 100, 134, 104, 152,  22, 212, 164,  92, 
204,  93, 101, 182, 146, 108, 112,  72,  80, 253, 237, 185, 218,  94,  21,  
 70,  87, 167, 141, 157, 132, 144, 216, 171,   0, 140, 188, 211,  10, 247, 
228,  88,   5, 184, 179,  69,   6, 208,  44,  30, 143, 202,  63,  15,   2, 
193, 175, 189,   3,   1,  19, 138, 107,  58, 145,  17,  65,  79, 103, 220, 
234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116,  34, 231, 173,
 53, 133, 226, 249,  55, 232,  28, 117, 223, 110,  71, 241,  26, 113,  29, 
 41, 197, 137, 111, 183,  98,  14, 170,  24, 190,  27, 252,  86,  62,  75, 
198, 210, 121,  32, 154, 219, 192, 254, 120, 205,  90, 244,  31, 221, 168,
 51, 136,   7, 199,  49, 177,  18,  16,  89,  39, 128, 236,  95,  96,  81,
127, 169,  25, 181,  74,  13,  45, 229, 122, 159, 147, 201, 156, 239, 160,
224,  59,  77, 174,  42, 245, 176, 200, 235, 187,  60, 131,  83, 153,  97, 
 23,  43,   4, 126, 186, 119, 214,  38, 225, 105,  20,  99,  85,  33,  12,
125 ];

// This method circularly shifts the array left by the number of elements
// given in its parameter. It returns the resulting array and is used for 
// the ShiftRow step. Note that shift() and push() could be used for a more 
// elegant solution, but they require IE5.5+, so I chose to do it manually. 

function cyclicShiftLeft(theArray, positions) {
  var temp = theArray.slice(0, positions);
  theArray = theArray.slice(positions).concat(temp);
  return theArray;
}

// Cipher parameters ... do not change these
var Nk = keySizeInBits / 32;                   
var Nb = blockSizeInBits / 32;
var Nr = roundsArray[Nk][Nb];

// Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec.

function xtime(poly) {
  poly <<= 1;
  return ((poly & 0x100) ? (poly ^ 0x11B) : (poly));
}

// Multiplies the two elements of GF(2^8) together and returns the result.
// See the Rijndael spec, but should be straightforward: for each power of
// the indeterminant that has a 1 coefficient in x, add y times that power
// to the result. x and y should be bytes representing elements of GF(2^8)

function mult_GF256(x, y) {
  var bit, result = 0;
  
  for (bit = 1; bit < 256; bit *= 2, y = xtime(y)) {
    if (x & bit) 
      result ^= y;
  }
  return result;
}

// Performs the substitution step of the cipher.  State is the 2d array of
// state information (see spec) and direction is string indicating whether
// we are performing the forward substitution ("encrypt") or inverse 
// substitution (anything else)

function byteSub(state, direction) {
  var S;
  if (direction == "encrypt")           // Point S to the SBox we're using
    S = SBox;
  else
    S = SBoxInverse;
  for (var i = 0; i < 4; i++)           // Substitute for every byte in state
    for (var j = 0; j < Nb; j++)
       state[i][j] = S[state[i][j]];
}

// Performs the row shifting step of the cipher.

function shiftRow(state, direction) {
  for (var i=1; i<4; i++)               // Row 0 never shifts
    if (direction == "encrypt")
       state[i] = cyclicShiftLeft(state[i], shiftOffsets[Nb][i]);
    else
       state[i] = cyclicShiftLeft(state[i], Nb - shiftOffsets[Nb][i]);

}

// Performs the column mixing step of the cipher. Most of these steps can
// be combined into table lookups on 32bit values (at least for encryption)
// to greatly increase the speed. 

function mixColumn(state, direction) {
  var b = [];                            // Result of matrix multiplications
  for (var j = 0; j < Nb; j++) {         // Go through each column...
    for (var i = 0; i < 4; i++) {        // and for each row in the column...
      if (direction == "encrypt")
        b[i] = mult_GF256(state[i][j], 2) ^          // perform mixing
               mult_GF256(state[(i+1)%4][j], 3) ^ 
               state[(i+2)%4][j] ^ 
               state[(i+3)%4][j];
      else 
        b[i] = mult_GF256(state[i][j], 0xE) ^ 
               mult_GF256(state[(i+1)%4][j], 0xB) ^
               mult_GF256(state[(i+2)%4][j], 0xD) ^
               mult_GF256(state[(i+3)%4][j], 9);
    }
    for (var i = 0; i < 4; i++)          // Place result back into column
      state[i][j] = b[i];
  }
}

// Adds the current round key to the state information. Straightforward.

function addRoundKey(state, roundKey) {
  for (var j = 0; j < Nb; j++) {                 // Step through columns...
    state[0][j] ^= (roundKey[j] & 0xFF);         // and XOR
    state[1][j] ^= ((roundKey[j]>>8) & 0xFF);
    state[2][j] ^= ((roundKey[j]>>16) & 0xFF);
    state[3][j] ^= ((roundKey[j]>>24) & 0xFF);
  }
}

// This function creates the expanded key from the input (128/192/256-bit)
// key. The parameter key is an array of bytes holding the value of the key.
// The returned value is an array whose elements are the 32-bit words that 
// make up the expanded key.

function keyExpansion(key) {
  var expandedKey = new Array();
  var temp;

  // in case the key size or parameters were changed...
  Nk = keySizeInBits / 32;                   
  Nb = blockSizeInBits / 32;
  Nr = roundsArray[Nk][Nb];

  for (var j=0; j < Nk; j++)     // Fill in input key first
    expandedKey[j] = 
      (key[4*j]) | (key[4*j+1]<<8) | (key[4*j+2]<<16) | (key[4*j+3]<<24);

  // Now walk down the rest of the array filling in expanded key bytes as
  // per Rijndael's spec
  for (j = Nk; j < Nb * (Nr + 1); j++) {    // For each word of expanded key
    temp = expandedKey[j - 1];
    if (j % Nk == 0) 
      temp = ( (SBox[(temp>>8) & 0xFF]) |
               (SBox[(temp>>16) & 0xFF]<<8) |
               (SBox[(temp>>24) & 0xFF]<<16) |
               (SBox[temp & 0xFF]<<24) ) ^ Rcon[Math.floor(j / Nk) - 1];
    else if (Nk > 6 && j % Nk == 4)
      temp = (SBox[(temp>>24) & 0xFF]<<24) |
             (SBox[(temp>>16) & 0xFF]<<16) |
             (SBox[(temp>>8) & 0xFF]<<8) |
             (SBox[temp & 0xFF]);
    expandedKey[j] = expandedKey[j-Nk] ^ temp;
  }
  return expandedKey;
}

// Rijndael's round functions... 

function Round(state, roundKey) {
  byteSub(state, "encrypt");
  shiftRow(state, "encrypt");
  mixColumn(state, "encrypt");
  addRoundKey(state, roundKey);
}

function InverseRound(state, roundKey) {
  addRoundKey(state, roundKey);
  mixColumn(state, "decrypt");
  shiftRow(state, "decrypt");
  byteSub(state, "decrypt");
}

function FinalRound(state, roundKey) {
  byteSub(state, "encrypt");
  shiftRow(state, "encrypt");
  addRoundKey(state, roundKey);
}

function InverseFinalRound(state, roundKey){
  addRoundKey(state, roundKey);
  shiftRow(state, "decrypt");
  byteSub(state, "decrypt");  
}

// encrypt is the basic encryption function. It takes parameters
// block, an array of bytes representing a plaintext block, and expandedKey,
// an array of words representing the expanded key previously returned by
// keyExpansion(). The ciphertext block is returned as an array of bytes.

function encrypt(block, expandedKey) {
  var i;  
  if (!block || block.length*8 != blockSizeInBits)
     return; 
  if (!expandedKey)
     return;

  block = packBytes(block);
  addRoundKey(block, expandedKey);
  for (i=1; i<Nr; i++) 
    Round(block, expandedKey.slice(Nb*i, Nb*(i+1)));
  FinalRound(block, expandedKey.slice(Nb*Nr)); 
  return unpackBytes(block);
}

// decrypt is the basic decryption function. It takes parameters
// block, an array of bytes representing a ciphertext block, and expandedKey,
// an array of words representing the expanded key previously returned by
// keyExpansion(). The decrypted block is returned as an array of bytes.

function decrypt(block, expandedKey) {
  var i;
  if (!block || block.length*8 != blockSizeInBits)
     return;
  if (!expandedKey)
     return;

  block = packBytes(block);
  InverseFinalRound(block, expandedKey.slice(Nb*Nr)); 
  for (i = Nr - 1; i>0; i--) 
    InverseRound(block, expandedKey.slice(Nb*i, Nb*(i+1)));
  addRoundKey(block, expandedKey);
  return unpackBytes(block);
}

/* !NEEDED
// This method takes a byte array (byteArray) and converts it to a string by
// applying String.fromCharCode() to each value and concatenating the result.
// The resulting string is returned. Note that this function SKIPS zero bytes
// under the assumption that they are padding added in formatPlaintext().
// Obviously, do not invoke this method on raw data that can contain zero
// bytes. It is really only appropriate for printable ASCII/Latin-1 
// values. Roll your own function for more robust functionality :)

function byteArrayToString(byteArray) {
  var result = "";
  for(var i=0; i<byteArray.length; i++)
    if (byteArray[i] != 0) 
      result += String.fromCharCode(byteArray[i]);
  return result;
}
*/

// This function takes an array of bytes (byteArray) and converts them
// to a hexadecimal string. Array element 0 is found at the beginning of 
// the resulting string, high nibble first. Consecutive elements follow
// similarly, for example [16, 255] --> "10ff". The function returns a 
// string.

function byteArrayToHex(byteArray) {
  var result = "";
  if (!byteArray)
    return;
  for (var i=0; i<byteArray.length; i++)
    result += ((byteArray[i]<16) ? "0" : "") + byteArray[i].toString(16);

  return result;
}

// This function converts a string containing hexadecimal digits to an 
// array of bytes. The resulting byte array is filled in the order the
// values occur in the string, for example "10FF" --> [16, 255]. This
// function returns an array. 

function hexToByteArray(hexString) {
  var byteArray = [];
  if (hexString.length % 2)             // must have even length
    return;
  if (hexString.indexOf("0x") == 0 || hexString.indexOf("0X") == 0)
    hexString = hexString.substring(2);
  for (var i = 0; i<hexString.length; i += 2) 
    byteArray[Math.floor(i/2)] = parseInt(hexString.slice(i, i+2), 16);
  return byteArray;
}

// This function packs an array of bytes into the four row form defined by
// Rijndael. It assumes the length of the array of bytes is divisible by
// four. Bytes are filled in according to the Rijndael spec (starting with
// column 0, row 0 to 3). This function returns a 2d array.

function packBytes(octets) {
  var state = new Array();
  if (!octets || octets.length % 4)
    return;

  state[0] = new Array();  state[1] = new Array(); 
  state[2] = new Array();  state[3] = new Array();
  for (var j=0; j<octets.length; j+= 4) {
     state[0][j/4] = octets[j];
     state[1][j/4] = octets[j+1];
     state[2][j/4] = octets[j+2];
     state[3][j/4] = octets[j+3];
  }
  return state;  
}

// This function unpacks an array of bytes from the four row format preferred
// by Rijndael into a single 1d array of bytes. It assumes the input "packed"
// is a packed array. Bytes are filled in according to the Rijndael spec. 
// This function returns a 1d array of bytes.

function unpackBytes(packed) {
  var result = new Array();
  for (var j=0; j<packed[0].length; j++) {
    result[result.length] = packed[0][j];
    result[result.length] = packed[1][j];
    result[result.length] = packed[2][j];
    result[result.length] = packed[3][j];
  }
  return result;
}

// This function takes a prospective plaintext (string or array of bytes)
// and pads it with pseudorandom bytes if its length is not a multiple of the block 
// size. If plaintext is a string, it is converted to an array of bytes
// in the process. The type checking can be made much nicer using the 
// instanceof operator, but this operator is not available until IE5.0 so I 
// chose to use the heuristic below. 

function formatPlaintext(plaintext) {
	var bpb = blockSizeInBits / 8;               // bytes per block
	var fillWithRandomBits;
	var i;

	// if primitive string or String instance
	if ((!((typeof plaintext == "object") &&
		((typeof (plaintext[0])) == "number"))) &&
		((typeof plaintext == "string") || plaintext.indexOf))
	{
		plaintext = plaintext.split("");
		// Unicode issues here (ignoring high byte)
		for (i=0; i<plaintext.length; i++) {
			plaintext[i] = plaintext[i].charCodeAt(0) & 0xFF;
		}
	} 

	i = plaintext.length % bpb;
	if (i > 0) {
//alert("adding " + (bpb - 1) + " bytes");
//		plaintext = plaintext.concat(getRandomBytes(bpb - i));
		{
			var	paddingBytes;
			var ii,cc;
			
			paddingBytes = new Array();
			cc = bpb - i;
			for (ii=0; ii<cc; ii++) {
				paddingBytes[ii] = cc;
			}

//is("cc", cc);
//is(getRandomBytes(bpb - i) + "", paddingBytes + "");
			plaintext = plaintext.concat(paddingBytes);
		}
	}
  
	return plaintext;
}

// Returns an array containing "howMany" random bytes.

function getRandomBytes(howMany) {
    var i, bytes = new Array();

//alert("getting some random bytes");
    for (i = 0; i < howMany; i++) {
    	bytes[i] = prng.nextInt(255);
    }
    return bytes;
}

// rijndaelEncrypt(plaintext, key, mode)
// Encrypts the plaintext using the given key and in the given mode. 
// The parameter "plaintext" can either be a string or an array of bytes. 
// The parameter "key" must be an array of key bytes. If you have a hex 
// string representing the key, invoke hexToByteArray() on it to convert it 
// to an array of bytes. The third parameter "mode" is a string indicating
// the encryption mode to use, either "ECB" or "CBC". If the parameter is
// omitted, ECB is assumed.
// 
// An array of bytes representing the cihpertext is returned. To convert 
// this array to hex, invoke byteArrayToHex() on it.

function rijndaelEncrypt(plaintext, key, mode) {
  var expandedKey, i, aBlock;
  var bpb = blockSizeInBits / 8;          // bytes per block
  var ct;                                 // ciphertext

  if (!plaintext || !key)
    return;
  if (key.length*8 != keySizeInBits)
    return; 
  if (mode == "CBC") {
    ct = getRandomBytes(bpb);             // get IV
//dump("IV", byteArrayToHex(ct));
  } else {
    mode = "ECB";
    ct = new Array();
  }

  // convert plaintext to byte array and pad with zeros if necessary. 
  plaintext = formatPlaintext(plaintext);

  expandedKey = keyExpansion(key);
  
  for (var block = 0; block < plaintext.length / bpb; block++) {
    aBlock = plaintext.slice(block * bpb, (block + 1) * bpb);
    if (mode == "CBC") {
      for (var i = 0; i < bpb; i++) {
        aBlock[i] ^= ct[(block * bpb) + i];
      }
    }
    ct = ct.concat(encrypt(aBlock, expandedKey));
  }

  return ct;
}

// rijndaelDecrypt(ciphertext, key, mode)
// Decrypts the using the given key and mode. The parameter "ciphertext" 
// must be an array of bytes. The parameter "key" must be an array of key 
// bytes. If you have a hex string representing the ciphertext or key, 
// invoke hexToByteArray() on it to convert it to an array of bytes. The
// parameter "mode" is a string, either "CBC" or "ECB".
// 
// An array of bytes representing the plaintext is returned. To convert 
// this array to a hex string, invoke byteArrayToHex() on it. To convert it 
// to a string of characters, you can use byteArrayToString().

function rijndaelDecrypt(ciphertext, key, mode) {
  var expandedKey;
  var bpb = blockSizeInBits / 8;          // bytes per block
  var pt = new Array();                   // plaintext array
  var aBlock;                             // a decrypted block
  var block;                              // current block number

  if (!ciphertext || !key || typeof ciphertext == "string")
    return;
  if (key.length*8 != keySizeInBits)
    return; 
  if (!mode) {
    mode = "ECB";                         // assume ECB if mode omitted
  }

  expandedKey = keyExpansion(key);
 
  // work backwards to accomodate CBC mode 
  for (block=(ciphertext.length / bpb)-1; block>0; block--) {
    aBlock = 
     decrypt(ciphertext.slice(block*bpb,(block+1)*bpb), expandedKey);
    if (mode == "CBC") 
      for (var i=0; i<bpb; i++) 
        pt[(block-1)*bpb + i] = aBlock[i] ^ ciphertext[(block-1)*bpb + i];
    else 
      pt = aBlock.concat(pt);
  }

  // do last block if ECB (skips the IV in CBC)
  if (mode == "ECB")
    pt = decrypt(ciphertext.slice(0, bpb), expandedKey).concat(pt);

  return pt;
}

//#############################################################################
//	Downloaded on March 30, 2006 from http://www.fourmilab.ch/javascrypt/javascrypt.zip (utf-8.js)
//#############################################################################


    /*	Encoding and decoding of Unicode character strings as
    	UTF-8 byte streams.  */
	
    //	UNICODE_TO_UTF8  --  Encode Unicode argument string as UTF-8 return value

    function unicode_to_utf8(s) {
	var utf8 = "";
	
	for (var n = 0; n < s.length; n++) {
            var c = s.charCodeAt(n);

            if (c <= 0x7F) {
	    	//  0x00 - 0x7F:  Emit as single byte, unchanged
        	utf8 += String.fromCharCode(c);
            } else if ((c >= 0x80) && (c <= 0x7FF)) {
	    	//  0x80 - 0x7FF:  Output as two byte code, 0xC0 in first byte
		//  	    	    	    	    	    0x80 in second byte
        	utf8 += String.fromCharCode((c >> 6) | 0xC0);
        	utf8 += String.fromCharCode((c & 0x3F) | 0x80);
            } else {
	    	// 0x800 - 0xFFFF:  Output as three bytes, 0xE0 in first byte
		//  	    	    	    	    	   0x80 in second byte
		//  	    	    	    	    	   0x80 in third byte
        	utf8 += String.fromCharCode((c >> 12) | 0xE0);
        	utf8 += String.fromCharCode(((c >> 6) & 0x3F) | 0x80);
        	utf8 += String.fromCharCode((c & 0x3F) | 0x80);
            }
	}
	return utf8;
    }

    //	UTF8_TO_UNICODE  --  Decode UTF-8 argument into Unicode string return value

    function utf8_to_unicode(utf8) {
	var s = "", i = 0, b1, b2, b2;

	while (i < utf8.length) {
            b1 = utf8.charCodeAt(i);
            if (b1 < 0x80) {	    // One byte code: 0x00 0x7F
        	s += String.fromCharCode(b1);
        	i++;
            } else if((b1 >= 0xC0) && (b1 < 0xE0)) {	// Two byte code: 0x80 - 0x7FF
        	b2 = utf8.charCodeAt(i + 1);
        	s += String.fromCharCode(((b1 & 0x1F) << 6) | (b2 & 0x3F));
        	i += 2;
            } else {	    	    // Three byte code: 0x800 - 0xFFFF
        	b2 = utf8.charCodeAt(i + 1);
		b3 = utf8.charCodeAt(i + 2);
        	s += String.fromCharCode(((b1 & 0xF) << 12) |
		    	    	    	 ((b2 & 0x3F) << 6) |
					 (b3 & 0x3F));
        	i += 3;
            }
	}
	return s;
    }

    /*	ENCODE_UTF8  --  Encode string as UTF8 only if it contains
			 a character of 0x9D (Unicode OPERATING
			 SYSTEM COMMAND) or a character greater
			 than 0xFF.  This permits all strings
			 consisting exclusively of 8 bit
			 graphic characters to be encoded as
			 themselves.  We choose 0x9D as the sentinel
			 character as opposed to one of the more
			 logical PRIVATE USE characters because 0x9D
			 is not overloaded by the regrettable
			 "Windows-1252" character set.  Now such characters
			 don't belong in JavaScript strings, but you never
			 know what somebody is going to paste into a
			 text box, so this choice keeps Windows-encoded
			 strings from bloating to UTF-8 encoding.  */
			 
    function encode_utf8(s) {
    	var i, necessary = false;
	
	for (i = 0; i < s.length; i++) {
	    if ((s.charCodeAt(i) == 0x9D) ||
	    	(s.charCodeAt(i) > 0xFF)) {
	    	necessary = true;
		break;
	    }
	}
	if (!necessary) {
	    return s;
	}
	return String.fromCharCode(0x9D) + unicode_to_utf8(s);
    }
    
    /*  DECODE_UTF8  --  Decode a string encoded with encode_utf8
			 above.  If the string begins with the
			 sentinel character 0x9D (OPERATING
			 SYSTEM COMMAND), then we decode the
			 balance as a UTF-8 stream.  Otherwise,
			 the string is output unchanged, as
			 it's guaranteed to contain only 8 bit
			 characters excluding 0x9D.  */
			 
    function decode_utf8(s) {
    	if ((s.length > 0) && (s.charCodeAt(0) == 0x9D)) {
	    return utf8_to_unicode(s.substring(1));
	}
	return s;
    }


//#############################################################################
//	Downloaded on April 26, 2006 from http://pajhome.org.uk/crypt/md5/md5.js
//#############################################################################

/*
 * A JavaScript implementation of the RSA Data Security, Inc. MD5 Message
 * Digest Algorithm, as defined in RFC 1321.
 * Version 2.1 Copyright (C) Paul Johnston 1999 - 2002.
 * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
 * Distributed under the BSD License
 * See http://pajhome.org.uk/crypt/md5 for more info.
 */

/*
 * Configurable variables. You may need to tweak these to be compatible with
 * the server-side, but the defaults work in most cases.
 */
var hexcase = 0;  /* hex output format. 0 - lowercase; 1 - uppercase        */
var b64pad  = ""; /* base-64 pad character. "=" for strict RFC compliance   */
var chrsz   = 8;  /* bits per input character. 8 - ASCII; 16 - Unicode      */

/*
 * These are the functions you'll usually want to call
 * They take string arguments and return either hex or base-64 encoded strings
 */
function hex_md5(s){ return binl2hex(core_md5(str2binl(s), s.length * chrsz));}
function b64_md5(s){ return binl2b64(core_md5(str2binl(s), s.length * chrsz));}
function str_md5(s){ return binl2str(core_md5(str2binl(s), s.length * chrsz));}
function hex_hmac_md5(key, data) { return binl2hex(core_hmac_md5(key, data)); }
function b64_hmac_md5(key, data) { return binl2b64(core_hmac_md5(key, data)); }
function str_hmac_md5(key, data) { return binl2str(core_hmac_md5(key, data)); }

/*
 * Perform a simple self-test to see if the VM is working
 */
function md5_vm_test()
{
  return hex_md5("abc") == "900150983cd24fb0d6963f7d28e17f72";
}

/*
 * Calculate the MD5 of an array of little-endian words, and a bit length
 */
function core_md5(x, len)
{
  /* append padding */
  x[len >> 5] |= 0x80 << ((len) % 32);
  x[(((len + 64) >>> 9) << 4) + 14] = len;

  var a =  1732584193;
  var b = -271733879;
  var c = -1732584194;
  var d =  271733878;

  for(var i = 0; i < x.length; i += 16)
  {
    var olda = a;
    var oldb = b;
    var oldc = c;
    var oldd = d;

    a = md5_ff(a, b, c, d, x[i+ 0], 7 , -680876936);
    d = md5_ff(d, a, b, c, x[i+ 1], 12, -389564586);
    c = md5_ff(c, d, a, b, x[i+ 2], 17,  606105819);
    b = md5_ff(b, c, d, a, x[i+ 3], 22, -1044525330);
    a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897);
    d = md5_ff(d, a, b, c, x[i+ 5], 12,  1200080426);
    c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341);
    b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983);
    a = md5_ff(a, b, c, d, x[i+ 8], 7 ,  1770035416);
    d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417);
    c = md5_ff(c, d, a, b, x[i+10], 17, -42063);
    b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162);
    a = md5_ff(a, b, c, d, x[i+12], 7 ,  1804603682);
    d = md5_ff(d, a, b, c, x[i+13], 12, -40341101);
    c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290);
    b = md5_ff(b, c, d, a, x[i+15], 22,  1236535329);

    a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510);
    d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632);
    c = md5_gg(c, d, a, b, x[i+11], 14,  643717713);
    b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302);
    a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691);
    d = md5_gg(d, a, b, c, x[i+10], 9 ,  38016083);
    c = md5_gg(c, d, a, b, x[i+15], 14, -660478335);
    b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848);
    a = md5_gg(a, b, c, d, x[i+ 9], 5 ,  568446438);
    d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690);
    c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961);
    b = md5_gg(b, c, d, a, x[i+ 8], 20,  1163531501);
    a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467);
    d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784);
    c = md5_gg(c, d, a, b, x[i+ 7], 14,  1735328473);
    b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734);

    a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558);
    d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463);
    c = md5_hh(c, d, a, b, x[i+11], 16,  1839030562);
    b = md5_hh(b, c, d, a, x[i+14], 23, -35309556);
    a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060);
    d = md5_hh(d, a, b, c, x[i+ 4], 11,  1272893353);
    c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632);
    b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640);
    a = md5_hh(a, b, c, d, x[i+13], 4 ,  681279174);
    d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222);
    c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979);
    b = md5_hh(b, c, d, a, x[i+ 6], 23,  76029189);
    a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487);
    d = md5_hh(d, a, b, c, x[i+12], 11, -421815835);
    c = md5_hh(c, d, a, b, x[i+15], 16,  530742520);
    b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651);

    a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844);
    d = md5_ii(d, a, b, c, x[i+ 7], 10,  1126891415);
    c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905);
    b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055);
    a = md5_ii(a, b, c, d, x[i+12], 6 ,  1700485571);
    d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606);
    c = md5_ii(c, d, a, b, x[i+10], 15, -1051523);
    b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799);
    a = md5_ii(a, b, c, d, x[i+ 8], 6 ,  1873313359);
    d = md5_ii(d, a, b, c, x[i+15], 10, -30611744);
    c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380);
    b = md5_ii(b, c, d, a, x[i+13], 21,  1309151649);
    a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070);
    d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379);
    c = md5_ii(c, d, a, b, x[i+ 2], 15,  718787259);
    b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551);

    a = safe_add(a, olda);
    b = safe_add(b, oldb);
    c = safe_add(c, oldc);
    d = safe_add(d, oldd);
  }
  return Array(a, b, c, d);

}

/*
 * These functions implement the four basic operations the algorithm uses.
 */
function md5_cmn(q, a, b, x, s, t)
{
  return safe_add(bit_rol(safe_add(safe_add(a, q), safe_add(x, t)), s),b);
}
function md5_ff(a, b, c, d, x, s, t)
{
  return md5_cmn((b & c) | ((~b) & d), a, b, x, s, t);
}
function md5_gg(a, b, c, d, x, s, t)
{
  return md5_cmn((b & d) | (c & (~d)), a, b, x, s, t);
}
function md5_hh(a, b, c, d, x, s, t)
{
  return md5_cmn(b ^ c ^ d, a, b, x, s, t);
}
function md5_ii(a, b, c, d, x, s, t)
{
  return md5_cmn(c ^ (b | (~d)), a, b, x, s, t);
}

/*
 * Calculate the HMAC-MD5, of a key and some data
 */
function core_hmac_md5(key, data)
{
  var bkey = str2binl(key);
  if(bkey.length > 16) bkey = core_md5(bkey, key.length * chrsz);

  var ipad = Array(16), opad = Array(16);
  for(var i = 0; i < 16; i++)
  {
    ipad[i] = bkey[i] ^ 0x36363636;
    opad[i] = bkey[i] ^ 0x5C5C5C5C;
  }

  var hash = core_md5(ipad.concat(str2binl(data)), 512 + data.length * chrsz);
  return core_md5(opad.concat(hash), 512 + 128);
}

/*
 * Add integers, wrapping at 2^32. This uses 16-bit operations internally
 * to work around bugs in some JS interpreters.
 */
function safe_add(x, y)
{
  var lsw = (x & 0xFFFF) + (y & 0xFFFF);
  var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
  return (msw << 16) | (lsw & 0xFFFF);
}

/*
 * Bitwise rotate a 32-bit number to the left.
 */
function bit_rol(num, cnt)
{
  return (num << cnt) | (num >>> (32 - cnt));
}

/*
 * Convert a string to an array of little-endian words
 * If chrsz is ASCII, characters >255 have their hi-byte silently ignored.
 */
function str2binl(str)
{
  var bin = Array();
  var mask = (1 << chrsz) - 1;
  for(var i = 0; i < str.length * chrsz; i += chrsz)
    bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (i%32);
  return bin;
}

/*
 * Convert an array of little-endian words to a string
 */
function binl2str(bin)
{
  var str = "";
  var mask = (1 << chrsz) - 1;
  for(var i = 0; i < bin.length * 32; i += chrsz)
    str += String.fromCharCode((bin[i>>5] >>> (i % 32)) & mask);
  return str;
}

/*
 * Convert an array of little-endian words to a hex string.
 */
function binl2hex(binarray)
{
  var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
  var str = "";
  for(var i = 0; i < binarray.length * 4; i++)
  {
    str += hex_tab.charAt((binarray[i>>2] >> ((i%4)*8+4)) & 0xF) +
           hex_tab.charAt((binarray[i>>2] >> ((i%4)*8  )) & 0xF);
  }
  return str;
}

/*
 * Convert an array of little-endian words to a base-64 string
 */
function binl2b64(binarray)
{
  var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
  var str = "";
  for(var i = 0; i < binarray.length * 4; i += 3)
  {
    var triplet = (((binarray[i   >> 2] >> 8 * ( i   %4)) & 0xFF) << 16)
                | (((binarray[i+1 >> 2] >> 8 * ((i+1)%4)) & 0xFF) << 8 )
                |  ((binarray[i+2 >> 2] >> 8 * ((i+2)%4)) & 0xFF);
    for(var j = 0; j < 4; j++)
    {
      if(i * 8 + j * 6 > binarray.length * 32) str += b64pad;
      else str += tab.charAt((triplet >> 6*(3-j)) & 0x3F);
    }
  }
  return str;
}


//#############################################################################
//#############################################################################
//#############################################################################



MochiKit.Base.update(Clipperz.Crypto.Base, {

	'__repr__': function () {
		return "[" + this.NAME + " " + this.VERSION + "]";
	},

	'toString': function () {
		return this.__repr__();
	},

	//-----------------------------------------------------------------------------

	'encryptUsingSecretKey': function (aKey, aMessage) {
//Clipperz.Profile.start("Clipperz.Crypto.Base.encryptUsingSecretKey");
		var result;
		var plaintext;
		var	header;
		var	key;
		
		key = hexToByteArray(Clipperz.Crypto.Base.computeHashValue(aKey));

		addEntropyTime();
    	prng = new AESprng(keyFromEntropy());

		plaintext = encode_utf8(aMessage);

		header = Clipperz.Base.byteArrayToString(hexToByteArray(Clipperz.Crypto.Base.computeMD5HashValue(plaintext)));
		
		//  Add message length in bytes to header
		i = plaintext.length;
		header += String.fromCharCode(i >>> 24);
		header += String.fromCharCode(i >>> 16);
		header += String.fromCharCode(i >>> 8);
		header += String.fromCharCode(i & 0xFF);

    	//	The format of the actual message passed to rijndaelEncrypt
	    //	is:
	    //
	    //	    Bytes   	Content
		//		 0-15   	MD5 signature of plaintext
		//		16-19   	Length of plaintext, big-endian order
		//		20-end  	Plaintext
		//    
	    //	Note that this message will be padded with zero bytes
	    //	to an integral number of AES blocks (blockSizeInBits / 8).
	    //	This does not include the initial vector for CBC
	    //	encryption, which is added internally by rijndaelEncrypt.
		result = byteArrayToHex(rijndaelEncrypt(header + plaintext, key, "CBC"));

    	delete prng;

//Clipperz.Profile.stop("Clipperz.Crypto.Base.encryptUsingSecretKey");
		return result;
	},

	//.............................................................................

	'decryptUsingSecretKey': function (aKey, aMessage) {
//Clipperz.Profile.start("Clipperz.Crypto.Base.decryptUsingSecretKey");
		var	key;
		var decryptedText;
		var	textLength;
		var	header;
		var	headerDigest;
		var plaintext;
		var i;
		
		key = hexToByteArray(Clipperz.Crypto.Base.computeHashValue(aKey));

		decryptedText = rijndaelDecrypt(hexToByteArray(aMessage), key, "CBC");

		header = decryptedText.slice(0, 20);
		decryptedText = decryptedText.slice(20);

		headerDigest = byteArrayToHex(header.slice(0,16));
		textLength = (header[16] << 24) | (header[17] << 16) | (header[18] << 8) | header[19];

		if ((textLength < 0) || (textLength > decryptedText.length)) {
//			jslog.warning("Message (length " + decryptedText.length + ") truncated.  " + textLength + " characters expected.");
			//	Try to sauve qui peut by setting length to entire message
			textLength = decryptedText.length;
		}

		plainText = "";

		for (i=0; i<textLength; i++) {
			plainText += String.fromCharCode(decryptedText[i]);
		}

		if (Clipperz.Crypto.Base.computeMD5HashValue(plainText) != headerDigest) {
//			jslog.warning("Message corrupted.  Checksum of decrypted message does not match.");
			throw Clipperz.Crypto.Base.exception.CorruptedMessage;
//			throw new Error("Message corrupted.  Checksum of decrypted message does not match. Parsed result: " + decode_utf8(plainText));
		}

		//  That's it; plug plaintext into the result field

		result = decode_utf8(plainText);
		
//Clipperz.Profile.stop("Clipperz.Crypto.Base.decryptUsingSecretKey");
		return result;
	},

	//-----------------------------------------------------------------------------

	'computeHashValue': function (aMessage) {
//Clipperz.Profile.start("Clipperz.Crypto.Base.computeHashValue");
		var	result;

		result = hex_sha256(aMessage);
//Clipperz.Profile.stop("Clipperz.Crypto.Base.computeHashValue");

		return result;
	},

	//.........................................................................
	
	'computeMD5HashValue': function (aMessage) {
		var	result;
//Clipperz.Profile.start("Clipperz.Crypto.Base.computeMD5HashValue");
		result = hex_md5(aMessage);
//Clipperz.Profile.stop("Clipperz.Crypto.Base.computeMD5HashValue");

		return result;
	},

	//-----------------------------------------------------------------------------

	'generateRandomSeed': function () {
//Clipperz.Profile.start("Clipperz.Crypto.Base.generateRandomSeed");
		var	result;
		var seed;
		var prng;
		var charA;
		var i;

		addEntropyTime();

		seed = keyFromEntropy();
		prng = new AESprng(seed);

		result = "";
		charA = ("A").charCodeAt(0);

		for (i = 0; i < 64; i++) {
			result += String.fromCharCode(charA + prng.nextInt(25));
		}
		
		delete prng;
		
		result = Clipperz.Crypto.Base.computeHashValue(result);
		
//Clipperz.Profile.stop("Clipperz.Crypto.Base.generateRandomSeed");
		return result;
	},

	//-----------------------------------------------------------------------------

	'exception': {
		'CorruptedMessage': new MochiKit.Base.NamedError("Clipperz.Crypto.Base.exception.CorruptedMessage") 
	},

	//.........................................................................
	__syntaxFix__: "syntax fix"
});